Catalysis Science & Technology
Paper
14 Y. Xu, T. Harimoto, L. S. Wang, T. Hirano, H. Kunieda, Y.
Hara and Y. Miyata, Effect of Steam and Hydrogen
Treatments on the Catalytic Activity of Pure Ni Honeycomb
for Methane Steam Reforming, Chem. Eng. Process.,
2018, 129, 63–70.
15 S. De, J. G. Zhang, R. Luque and N. Yan, Ni-Based Bimetallic
Heterogeneous Catalysts for Energy and Environmental
Applications, Energy Environ. Sci., 2016, 9, 3314–3347.
16 V. Ponec and G. C. Bond, Catalysis by Metals and Alloys -
Prologue, Catalysis by Metals and Alloys, 1995, vol. 95, pp. 1–
5.
17 Y. G. Chen, O. Yamazaki, K. Tomishige and K. Fujimoto,
Noble Metal Promoted Ni0.03Mg0.97O Solid Solution Catalysts
for the Reforming of CH4 with CO2, Catal. Lett., 1996, 39,
91–95.
18 K. Tomishige, S. Kanazawa, M. Sato, K. Ikushima and K.
Kunimori, Catalyst Design of Pt-Modified Ni/Al2O3 Catalyst
with Flat Temperature Profile in Methane Reforming with
CO2 and O2, Catal. Lett., 2002, 84, 69–74.
19 S. Roy, S. Hariharan and A. K. Tiwari, Pt-Ni Subsurface Alloy
Catalysts: An Improved Performance toward CH4
Dissociation, J. Phys. Chem. C, 2018, 122, 10857–10870.
20 L. S. Wang, K. Murata and M. Inaba, Control of the Product
Ratio of CO2/(CO+CO2) and Inhibition of Catalyst
Deactivation for Steam Reforming of Gasoline to Produce
Hydrogen, Appl. Catal., B, 2004, 48, 243–248.
21 L. S. Wang, K. Murata, Y. Matsumura and M. Inaba, Lower-
Temperature Catalytic Performance of Bimetallic Ni-Re/Al2O3
Catalyst for Gasoline Reforming to Produce Hydrogen with
the Inhibition of Methane Formation, Energy Fuels, 2006, 20,
1377–1381.
22 K. T. Liu, et al., Supported Nickel-Rhenium Catalysts for
Selective Hydrogenation of Methyl Esters to Alcohols, Chem.
Commun., 2017, 53, 9761–9764.
23 F. F. Yang, D. Liu, H. Wang, X. Liu, J. Y. Han, Q. F. Ge and
X. L. Zhu, Geometric and Electronic Effects of Bimetallic Ni-
Re Catalysts for Selective Deoxygenation of M-Cresol to
Toluene, J. Catal., 2017, 349, 84–97.
29 B. A. Haberman and J. B. Young, Three-Dimensional
Simulation of Chemically Reacting Gas Flows in the Porous
Support Structure of an Integrated-Planar Solid Oxide Fuel
Cell, Int. J. Heat Mass Transfer, 2004, 47, 3617–3629.
30 V. Palma, A. Ricca, E. Meloni, M. Martino, M. Miccio and P.
Ciambelli, Experimental and Numerical Investigations on
Structured Catalysts for Methane Steam Reforming
Intensification, J. Cleaner Prod., 2016, 111, 217–230.
31 H. Ohashi and Y. Inagaki Catalytic Activity of Catalysts for
Steam Reforming Reaction, JAERI-Tech 2003-046, Japan
Atomic Energy Research Institute, Ibaraki, Japan, 2003.
32 K. Hashimoto, Reaction Engineering, Baifukan, Tokyo, Japan,
1993.
33 E. Tronconi and P. Forzatti, Adequacy of Lumped Parameter
Models for Scr Reactors with Monolith Structure, AIChE J.,
1992, 38, 201–210.
34 E. Tronconi and A. Beretta, The Role of Inter- and Intra-
Phase Mass Transfer in the Scr-DenoIJX) Reaction over
Catalysts of Different Shapes, Catal. Today, 1999, 52,
249–258.
35 R. D. Hawthorn, Reaction Research Needs 4. Broad Range of
Design Problems, Chem. Eng. Prog., 1974, 70, 41–43.
36 D. E. Mears, Diagnostic Criteria for Heat Transport
Limitations in Fixed Bed Reactors, J. Catal., 1971, 20, 127–131.
37 D. E. Mears, Tests for Transport Limitations in Experimental
Catalytic Reactors, Ind. Eng. Chem. Process Des. Dev.,
1971, 10, 541–547.
38 M. Tabuchi, H. Asakura, H. Morimoto, N. Watanabe and Y.
Takeda, Hard X-Ray XAFS Beamline, BLS1, at AichiSR,
J. Phys.: Conf. Ser., 2016, 712, 1–4.
39 B. Ravel and M. Newville, Athena, Artemis, Hephaestus: Data
Analysis for X-Ray Absorption Spectroscopy Using Ifeffit,
J. Synchrotron Radiat., 2005, 12, 537–541.
40 M. Tanaka, Y. Katsuya and A. Yamamoto, A New Large
Radius Imaging Plate Camera for High-Resolution and High-
Throughput Synchrotron X-Ray Powder Diffraction by
Multiexposure Method, Rev. Sci. Instrum., 2008, 79, 075106.
41 H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-
Zone Integrations, Phys. Rev. B: Solid State, 1976, 13,
5188–5192.
24 L. Ma, K. J. Sun, M. Luo, L. Yan, Z. Jiang, A. H. Lu and Y. J.
Ding, Role of Reox Species in Ni-Re/Al2O3 Catalyst for
Amination of Monoethanolamine, J. Phys. Chem. C,
2018, 122, 23011–23025.
25 L. Ma, L. Yan, A. H. Lu and Y. J. Ding, Effect of Re Promoter
on the Structure and Catalytic Performance of Ni-Re/Al2O3
42 J. M. Wei and E. Iglesia, Isotopic and Kinetic Assessment of
the Mechanism of Reactions of CH4 with CO2 or H2O to
Form Synthesis Gas and Carbon on Nickel Catalysts,
J. Catal., 2004, 224, 370–383.
Catalysts
for
the
Reductive
Amination
of
43 K. Ahmed and K. Foger, Kinetics of Internal Steam
Reforming of Methane on Ni/YSZ-Based Anodes for Solid
Oxide Fuel Cells, Catal. Today, 2000, 63, 479–487.
44 E. Nikolla, J. Schwank and S. Linic, Comparative Study of
the Kinetics of Methane Steam Reforming on Supported Ni
and Sn/Ni Alloy Catalysts: The Impact of the Formation of Ni
Alloy on Chemistry, J. Catal., 2009, 263, 220–227.
45 J. G. Xu and G. F. Froment, Methane Steam Reforming,
Methanation and Water-Gas Shift 1. Intrinsic Kinetics, AIChE
J., 1989, 35, 88–96.
46 E. Broclawik, J. Haber and L. Ungier, Electronic-Structure of
Rhenium Oxides, J. Phys. Chem. Solids, 1981, 42, 203–208.
Monoethanolamine, RSC Adv., 2018, 8, 8152–8163.
26 B. A. Rosen, E. Gileadi and N. Eliaz, Electrodeposited Re-
Promoted Ni Foams as a Catalyst for the Dry Reforming of
Methane, Catal. Commun., 2016, 76, 23–28.
27 D. Zubenko, S. Singh and B. A. Rosen, Exsolution of Re-Alloy
Catalysts with Enhanced Stability for Methane Dry
Reforming, Appl. Catal., B, 2017, 209, 711–719.
28 Y. Xu, Y. Ma, M. Demura and T. Hirano, Enhanced Catalytic
Activity of Ni3Al Foils Towards Methane Steam Reforming by
Water Vapor and Hydrogen Pretreatments, Int. J. Hydrogen
Energy, 2016, 41, 7352–7362.
This journal is © The Royal Society of Chemistry 2020
Catal. Sci. Technol.