Fenugreek Compound Binds to and Enhances GLP-1 Potency
8. Drucker, D. J. (2006) The biology of incretin hormones. Cell Metab. 3,
153–165
ficient for glucose-dependent insulin release (29), future stud-
ies may investigate whether compounds that enhance GLP-1-
induced cAMP production represent a new class of therapeutic
agents for the treatment of type 2 diabetes or other GLP-1 sig-
naling-related disorders. To this end, examination of in vivo
effects of N55 is necessary. Other studies may also investigate
the viability of nutrient derivatives from edible plants in treat-
ing or preventing type 2 diabetes or other GLP-1 signaling-
related conditions.
9. Meier, J. J. (2012) GLP-1 receptor agonists for individualized treatment of
type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 728–742
10. Meier, J. J., Nauck, M. A., Kranz, D., Holst, J. J., Deacon, C. F., Gaeckler, D.,
Schmidt, W. E., and Gallwitz, B. (2004) Secretion, degradation, and elim-
ination of glucagon-like peptide 1 and gastric inhibitory polypeptide in
patients with chronic renal insufficiency and healthy control subjects.
Diabetes 53, 654–662
11. Gu, G., Roland, B., Tomaselli, K., Dolman, C. S., Lowe, C., and Heilig, J. S.
(2013) Glucagon-like peptide-1 in the rat brain: distribution of expression
and functional implication. J. Comp. Neurol. 521, 2235–2261
12. Nauck, M. A., Vardarli, I., Deacon, C. F., Holst, J. J., and Meier, J. J. (2011)
Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is
up, what is down? Diabetologia 54, 10–18
In summary, we identified a new compound from fenugreek
seeds with potential clinical application in the treatment of type
2 diabetes and other GLP-1 signaling-related disorders. N55
binds to GLP-1(7–36)-amide, enhances the potency in stimu-
lating the cAMP pathway. This mechanism is distinct from that
of classical GLP-1R-signaling agents, which directly act on the
target receptor orthosterically or allosterically. N55 thus repre-
sents a new class of compounds that enhance GLP-1R signaling.
Our results also suggest that GLP-1 might be a novel target for
drug discovery in type 2 diabetes and other conditions. The
postulated mechanism of N55 action also points to the possi-
bility of modulating GPCR activity through modification of the
potency of its cognate ligands. The approach described here is
applicable to many other plant compound discovery efforts
related to other GPCRs and their respective ligands.
13. Calanna, S., Christensen, M., Holst, J. J., Laferrère, B., Gluud, L. L., Vilsbøll,
T., and Knop, F. K. (2013) Secretion of glucagon-like peptide-1 in patients
with type 2 diabetes mellitus: systematic review and meta-analyses of clin-
ical studies. Diabetologia 56, 965–972
14. Færch, K., Torekov, S. S., Vistisen, D., Johansen, N. B., Witte, D. R., Jons-
son, A., Pedersen, O., Hansen, T., Lauritzen, T., Sandbæk, A., Holst, J. J.,
and Jørgensen, M. E. (2015) GLP-1 response to oral glucose is reduced in
prediabetes, screen-detected type 2 diabetes, and obesity and influenced
by sex: The ADDITION-PRO Study. Diabetes 64, 2513–2525
15. Lovshin, J. A., and Drucker, D. J. (2009) Incretin-based therapies for type 2
diabetes mellitus. Nat. Rev. Endocrinol. 5, 262–269
16. Butler, P. C., Elashoff, M., Elashoff, R., and Gale, E. A. (2013) A critical
analysis of the clinical use of incretin-based therapies: Are the GLP-1
therapies safe? Diabetes Care 36, 2118–2125
17. Pierce, K. L., and Lefkowitz, R. J. (2001) Classical and new roles of -ar-
restins in the regulation of G-protein-coupled receptors. Nat. Rev. Neuro-
sci. 2, 727–733
Author Contributions—R.-J. C. designed the synthetic plan and syn-
thesized and assigned the structure of N55. K. K. set up the signaling
assay platforms, isolated N55, and designed biological and pharma-
cological characterization of N55. Y.-H. C. performed the cAMP
BRET assays, and ligand binding assays. N.-P. L. implemented syn-
thetic experiments and spectrometry analysis. Receptor endocytosis
assays were done by G.-H. C. Y.-H. C. and K. K. set up the cAMP
assay platform. R.-J. C. and K. K. wrote the paper.
18. Widmann, C., Bürki, E., Dolci, W., and Thorens, B. (1994) Signal trans-
duction by the cloned glucagon-like peptide-1 receptor: comparison with
signaling by the endogenous receptors of beta cell lines. Mol. Pharmacol.
45, 1029–1035
19. Cheng, Y. H., Ho, M. S., Huang, W. T., Chou, Y. T., and King, K. (2015)
Modulation of glucagon-like peptide-1 (GLP-1) potency by endocannabi-
noid-like lipids represents a novel mode of regulating GLP-1 receptor
signaling. J. Biol. Chem. 290, 14302–14313
Acknowledgments—We thank Dr. Mei-Shang Ho, Dr. Lee-Young
Chau, and Dr. Chi-Huy Wong for constructive discussions.
20. Haber, S. L., and Keonavong, J. (2013) Fenugreek use in patients with
diabetes mellitus. Am. J. Health Syst. Pharm. 70, 1196
21. Belaïd-Nouira, Y., Bakhta, H., Samoud, S., Trimech, M., Haouas, Z., and
Ben Cheikh, H. (2013) A novel insight on chronic AlCl3 neurotoxicity
through IL-6 and GFAP expressions: modulating effect of functional food
fenugreek seeds. Nutr. Neurosci. 16, 218–224
References
1. Campbell, J. E., and Drucker, D. J. (2013) Pharmacology, physiology, and
mechanisms of incretin hormone action. Cell Metab. 17, 819–837
2. Aviles-Olmos, I., Dickson, J., Kefalopoulou, Z., Djamshidian, A., Kahan, J.,
Ell, P., Whitton, P., Wyse, R., Isaacs, T., Lees, A., Limousin, P., and Fol-
tynie, T. (2014) Motor and cognitive advantages persist 12 months after
exenatide exposure in Parkinson’s disease. J. Parkinsons Dis. 4, 337–344
3. Hölscher, C. (2014) Central effects of GLP-1: new opportunities for treat-
ments of neurodegenerative diseases. J. Endocrinol. 221, T31–T41
4. Lønborg, J., Kelbæk, H., Vejlstrup, N., Bøtker, H. E., Kim, W. Y., Hol-
mvang, L., Jørgensen, E., Helqvist, S., Saunamäki, K., Terkelsen, C. J.,
Schoos, M. M., Køber, L., Clemmensen, P., Treiman, M., and Engstrøm, T.
(2012) Exenatide reduces final infarct size in patients with ST-segment-
22. Al-Okbi, S. Y. (2014) Nutraceuticals of anti-inflammatory activity as com-
plementary therapy for rheumatoid arthritis. Toxicol. Ind. Health 30,
738–749
23. Bae, M. J., Shin, H. S., Choi, D. W., and Shon, D. H. (2012) Antiallergic
effect of Trigonella foenum-graecum L. extracts on allergic skin inflamma-
tion induced by trimellitic anhydride in BALB/c mice. J. Ethnopharmacol.
144, 514–522
24. Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., and Caron, M. G.
(1999) Association of -arrestin with G protein-coupled receptors during
clathrin-mediated endocytosis dictates the profile of receptor resensitiza-
tion. J. Biol. Chem. 274, 32248–32257
elevation myocardial infarction and short-duration of ischemia. Circ. Car- 25. Hudson, C. C., Oakley, R. H., Sjaastad, M. D., and Loomis, C. R. (2006)
diovasc. Interv. 5, 288–295
High-content screening of known G protein-coupled receptors by arrestin
5. Muscogiuri, G., Cignarelli, A., Giorgino, F., Prodram, F., Santi, D., Ti-
translocation. Methods Enzymol. 414, 63–78
rabassi, G., Balercia, G., Modica, R., Faggiano, A., and Colao, A. (2014) 26. Córdova, A., Notz, W., Zhong, G., Betancort, J. M., and Barbas, C. F., 3rd
GLP-1: benefits beyond pancreas. J. Endocrinol. Invest. 37, 1143–1153
6. Drucker, D. J., Buse, J. B., Taylor, K., Kendall, D. M., Trautmann, M.,
Zhuang, D., Porter, L., and DURATION-1 Study Group. (2008) Exenatide
once weekly versus twice daily for the treatment of type 2 diabetes: a
randomised, open-label, non-inferiority study. Lancet 372, 1240–1250
7. Nauck, M. A. (2011) Incretin-based therapies for type 2 diabetes mellitus:
properties, functions, and clinical implications. Am. J. Med. 124, S3–S18
(2002) A highly enantioselective amino acid-catalyzed route to function-
alized ␣-amino acids. J. Am. Chem. Soc. 124, 1842–1843
27. Gallwitz, B., Witt, M., Fölsch, U. R., Creutzfeldt, W., and Schmidt, W. E.
(1993) Binding specificity and signal transduction of receptors for gluca-
gon-like peptide-1(7–36)amide and gastric inhibitory polypeptide on
RINm5F insulinoma cells. J. Mol. Endocrinol. 10, 259–268
28. Göke, R., Göke, B., Richter, G., and Arnold, R. (1988) The entero-insular
OCTOBER 23, 2015•VOLUME 290•NUMBER 43
JOURNAL OF BIOLOGICAL CHEMISTRY 26247