10.1002/cctc.201900787
ChemCatChem
COMMUNICATION
[11] W. Lan, J. B. de Bueren, J. S. Luterbacher, Angew. Chemie Int. Ed.
2019, 58, 2649–2654.
high degrees of -butoxylation in their -aryl ether linkages. This
feature, which precludes the use of previously reported
methodologies, is key for enabling, the facile oxidation of the
primary alcohols after phenol methylation. This provides a
relatively stable -aryl ether -aldehyde containing lignin (lignin-
ox) which can be depolymerised selectively in the presence of
BuOH using an NHC catalyst generated from 2. The resulting
monomeric ester products could be purified by column
chromatography, giving 3d as the major compound from a
beech butanosolv lignin. This biomass derived aromatic
monomer, which has not previously been obtained from lignin,
was shown to be efficiently converted into cinnamic acid
derivatives opening the door to a wide range of useful chemical
transformations and the production of high value products.
[12] S. Dabral, J. G. Hernández, P. C. J. Kamer, C. Bolm, ChemSusChem
2017, 10, 2707–2713.
[13] T. Vom Stein, T. Den Hartog, J. Buendia, S. Stoychev, J. Mottweiler, C.
Bolm, J. Klankermayer, W. Leitner, Angew. Chemie - Int. Ed. 2015, 54,
5859–5863.
[14] C. S. Lancefield, L. W. Teunissen, B. M. Weckhuysen, P. C. A.
Bruijnincx, Green Chem. 2018, 20, 3214–3221.
[15] C. S. Lancefield, O. S. Ojo, F. Tran, N. J. Westwood, Angew. Chemie -
Int. Ed. 2015, 54, 258–262.
[16] T. Phongpreecha, N. C. Hool, R. J. Stoklosa, A. S. Klett, C. E. Foster, A.
Bhalla, D. Holmes, M. C. Thies, D. B. Hodge, Green Chem. 2017, 19,
5131–5143.
[17] L. Shuai, M. T. Amiri, Y. M. Questell-Santiago, F. Héroguel, Y. Li, H.
Kim, R. Meilan, C. Chapple, J. Ralph, J. S. Luterbacher, Science 2016,
354, 329–333.
[18] C. S. Lancefield, I. Panovic, P. J. Deuss, K. Barta, N. J. Westwood,
Green Chem. 2017, 19, 202–214.
Acknowledgements
[19] K. B. Ling, A. D. Smith, Chem. Commun. 2011, 47, 373–375.
[20] C. S. Lancefield, L. W. Teunissen, B. M. Weckhuysen, P. C. A.
Bruijnincx, Green Chem. 2018, 20, 3214–3221.
This work was supported by the China Scholarship Council-St
Andrews PhD Fellowship (GX). C.S.L. thanks the Leverhulme
Trust Early Career Fellowship (ECF-2018-480) and the
University of St Andrews. We acknowledge the EPSRC UK
Mass Spectrometry Facility at Swansea and Mrs. C. Horsburgh
of St Andrews University for mass spectrometry analysis. We
thank Prof. Andrew Smith for useful discussions and expertise
concerning the NHC catalytic system used.
[21] In response to issues raised during the review of this manuscript, the
following additional insights were gained following further
experimentation: (i) that the presence of molecular sieves was not
essential for the NHC-catalysed reaction; (ii) that the co-solvent butanol
could be successfully replaced with ethanol leading to the analogous
major product S11 (ethyl not butyl ester); (iii) whilst semi-quantitative,
2D HSQC analysis of the lignin-ox suggested that a small decrease in
the total -O-4 content of the lignin occurred during the oxidation
reaction. See ESI for additional details. We thank the Reviewers for
suggesting these additional experiments.
[22] J. Einhorn, C. Einhorn, F. Ratajczak, J.-L. Pierre, J. Org. Chem. 2002,
61, 7452–7454.
Conflict of interest
[23] I. Panovic, C. S. Lancefield, D. Phillips, M. Gronnow, N. J. Westwood,
ChemSusChem 2018, 12, cssc.201801971.
The authors declare no conflict of interest.
[24] F. Lu, J. Ralph, Plant J. 2003, 35, 535–544.
[25] P. Torre, B. Aliakbarian, B. Rivas, J. M. Domínguez, A. Converti,
Biochem. Eng. J. 2008, 40, 500–506.
Keywords: lignin • oxidation • NHC catalysis • biomass
[26] S. I. Mussatto, G. Dragone, I. C. Roberto, Ind. Crops Prod. 2007, 25,
231–237.
conversion • butanol
[27] A. U. Buranov, G. Mazza, Food Chem. 2009, 115, 1542–1548.
[28] A. Tilay, M. Bule, J. Kishenkumar, U. Annapure, J. Agric. Food Chem.
2008, 56, 7644–7648.
[1]
R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A.
Bruijnincx, B. M. Weckhuysen, Angew. Chemie Int. Ed. 2016, 55,
8164–8215.
[29] H. Kuwahara, A. Kanazawa, D. Wakamatu, S. Morimura, K. Kida, T.
Akaike, H. Maeda, J. Agric. Food Chem. 2004, 52, 4380–4387.
[30] D. Liu, J. Sun, B. A. Simmons, S. Singh, ACS Sustain. Chem. Eng.
2018, 6, 7232–7238.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
F. Oehman, H. Theliander, P. Tomani, P. Axegard, US Pat. 2009,
US20100325.
L. Kouisni, A. Gagné, K. Maki, P. Holt-Hindle, M. Paleologou, ACS
Sustain. Chem. Eng. 2016, 4, 5152–5159.
[31] M. Yamashita, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2010, 39, 68–
69.
M. A. Lake, J. C. Blackburn, Cellul. Chem. Technol. Cellul. Chem.
Technol 2014, 48, 799–804.
[32] A.F. Reano, J. Cherubin, A. M. M. Peru, Q. Wang, T. Clement, S.
Domenek, F. Allais, ACS Sustainable Chem. Eng. 2015, 3(12), 3486-
3496.
G. T. Beckham, Ed. , Lignin Valorization, Royal Society Of Chemistry,
Cambridge, 2018.
C. S. Lancefield, O. S. Ojo, F. Tran, N. J. Westwood, Angew. Chemie
Int. Ed. 2015, 54, 258–262.
[33] F. Lu, J. Ralph, Org. Biomol. Chem. 2008, 6, 3681-3694.
[34] E. Kim, H. K. Lee, E. Hwang, S. Kim, W. S. Lee, S. Lee, S. Jung, Synth.
Commun. 2005, 35, 1231–1238.
A. Rahimi, A. Azarpira, H. Kim, J. Ralph, S. S. Stahl, J. Am. Chem. Soc.
2013, 135, 6415–6418.
A. Rahimi, A. Ulbrich, J. J. Coon, S. S. Stahl, Nature 2014, 515, 249–
252.
G. Magallanes, M. D. Kärkäs, I. Bosque, S. Lee, S. Maldonado, C. R. J.
Stephenson, ACS Catal. 2019, 2252–2260.
[10] X. Wu, X. Fan, S. Xie, J. Lin, J. Cheng, Q. Zhang, L. Chen, Y. Wang,
Nat. Catal. 2018, 1, 772–780.
This article is protected by copyright. All rights reserved.