ZAREYEE ET AL.
5 of 6
The mechanism of the CMK‐5‐SO3H‐catalysed
ORCID
reaction is believed to involve the formation of imine,
so that addition of CN− is facilitated to afford the
α‐aminonitrile (Scheme 1).[39,59] The acidic hydrogen
of CMK‐5‐SO3H activates the carbonyl group of the
aldehyde through hydrogen bonding for nucleophilic
attack of amine to produce the corresponding imine,
which is in equilibrium with the starting materials. In
the next step, the CN− group of TMSCN transfers to
imine to afford α‐aminonitrile with regeneration of
CMK‐5‐SO3H.
The reusability of a catalyst is one of the most
important benefits, making it useful for commercial
applications. Recycling experiments were conducted
to determine the recovery of the catalyst after the
reaction, through a series of sequential syntheses of
α‐aminonitrile from benzaldehyde, aniline and TMSCN
as model substrates. Upon completion, hot EtOAc was
added and the reaction mixture was filtered and washed
with hot EtOAc. CMK‐5‐SO3H showed excellent recov-
erability and reusability over ten successive runs under
the same conditions as the first run (Figure 3).
Moreover, the uniformity of the highly ordered structure
of CMK‐5‐SO3H after ten recoveries is confirmed from
the transmission electron microscopy (TEM) image
(Figure 4).
REFERENCES
[1] A. Dömling, I. Ugi, Angew. Chem. 2000, 39, 3168.
[2] P. T. Anastas, J. S. Warner, Green Chemistry: Theory and Prac-
tice, Oxford University Press, Oxford 1998.
[3] V. A. Chebanov, K. A. Gura, S. M. Desenko, Synthesis of Het-
erocycles via Multicomponent Reactions I, in Topics in
Heterocyclic Chemistry, (Eds: R. V. A. Orru, E. Ruijter) Vol.
23, Springer, Berlin 2010 41.
[4] C. Hulme, V. Gore, Curr. Med. Chem. 2003, 10, 51.
[5] A. Strecker, Justus Liebigs Ann. Chem. 1850, 75, 27.
[6] D. Enders, J. P. Shilvock, Chem. Soc. Rev. 2000, 29, 359.
[7] W. L. Matier, D. A. Owens, W. T. Comer, D. Deitchman, H. C.
Ferguson, R. J. Seidehamel, J. R. Young, J. Med. Chem. 1973,
16, 901.
[8] G. Dyker, Angew. Chem. Int. Ed. Eng. 1997, 36, 1700.
[9] A. Corma, Chem. Rev. 1997, 97, 2373.
[10] A. Kirschning, H. Monenschein, R. Wittenberg, Angew. Chem.
Int. Ed. 2001, 16, 650.
[11] E. Kemnitz, S. Wuttke, S. M. Coman, Eur. J. Inorg. Chem. 2011,
4773.
[12] D. Trong On, D. Desplantier‐Giscard, C. Danumah, S.
Kaliaguisne, Appl. Catal. A 2003, 253, 545.
[13] J. Jarusiewiez, Y. Choe, K. S. Yoo, C. P. Park, K. W. Jung,
J. Organomet. Chem. 2009, 74, 2873.
4 | CONCLUSIONS
[14] F. Rajabi, S. Ghiassian, M. R. Saidi, Green Chem. 2010, 12, 1349.
We have reported an efficient and green method for the
one‐pot three‐component Strecker reaction with high
yields of products for a range of aldehydes under
solvent‐free conditions at room temperature using envi-
ronmentally friendly heterogeneous CMK‐5‐SO3H. Its
rather green and mild conditions, operational simplicity
and practicability render it an attractive approach for
the generation of diverse α‐aminonitriles. The recovered
CMK‐5‐SO3H could be directly reused in ten successive
runs without significant loss of activity, which clearly
demonstrates the practical recyclability of this catalyst.
As a result of its high efficiency and activity, as well
as recyclability and low catalyst loading, the catalyst
system described herein is foreseen to have an excellent
future for a range of applications in the synthesis of
fine chemicals.
[15] B. Karmakar, A. Sinhamahapatra, A. B. Panda, J. Banerji, B.
Chowdhury, Appl. Catal. A 2011, 392, 111.
[16] G.‐W. Zhang, D.‐H. Zheng, J. Nie, T. Wang, J.‐A. Ma, Org.
Biomol. Chem. 2010, 8, 1399.
[17] Y.‐L. Hou, R. W.‐Y. Sun, X.‐P. Zhou, J.‐H. Wang, D. Li, Chem.
Commun. 2014, 50, 2295.
[18] S. J. Zuend, M. P. Coughlin, M. P. Lalonde, E. N. Jacobsen,
Nature 2009, 461, 968.
[19] Z. Li, Y. Ma, J. Xu, J. Shi, H. Cai, Tetrahedron Lett. 2010, 51,
3922.
[20] B. A. Horenstein, K. Nakanishi, J. Am. Chem. Soc. 1989, 111,
6242.
[21] S. K. De, R. A. Gibbs, Tetrahedron Lett. 2004, 45, 7407.
[22] R. Sakurai, S. Suzuki, J. Hashimoto, M. Baba, O. Itoh, A.
Uchida, T. Hattori, S. Miyano, M. Yamaura, Org. Lett. 2004, 6,
2241.
[23] L. Royer, S. K. De, R. A. Gibbs, Tetrahedron Lett. 2005, 46, 4595.
[24] A. S. Paraskar, A. Sudalai, Tetrahedron Lett. 2006, 47, 5759.
ACKNOWLEDGEMENT
[25] K. Surendra, N. Srilakshmi Krishnaveni, A. Mahesh, K. Rama
The authors acknowledge the Islamic Azad University
of Qaemshahr Research Councils for support of this
work.
Rao, J. Organomet. Chem. 2006, 71, 2532.
[26] M. Narasimhulu, T. S. Reddy, K. C. Mahesh, S. M. Reddy, A. V.
Reddy, Y. Venkateswarlu, J. Mol. Catal. A 2007, 264, 288.