Organic Letters
Letter
Tetrahedron 1995, 51, 9179−9190. (c) Iyer, M. S.; Gigstad, K. M.;
Namdev, N. D.; Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910−4911.
(3) (a) Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren,
(25) For related membrane concepts generating CO, NH3, and Cl2
gas, see: (a) Brancour, C.; Fukuyama, T.; Mukai, Y.; Skrydstrup, T.;
Ryu, I. Org. Lett. 2013, 15, 2794−2797. (b) Xue, C.; Li, J.; Lee, J. P.;
Zhang, P.; Wu, J. React. Chem. Eng. 2019, 4, 346−350. (c) Hansen, S.
V. F.; Wilson, Z. E.; Ulven, T.; Ley, S. V. React. Chem. Eng. 2016, 1,
280−287. (d) Strauss, F. J.; Cantillo, D.; Guerra, J.; Kappe, C. O.
React. Chem. Eng. 2016, 1, 472−476.
(26) The tube-in-flask reactor can be assembled from commercially
available parts within ∼1 h; see: (a) Dallinger, D.; Kappe, C. O. Nat.
Protoc. 2017, 12, 2138−2147. For examples involving the formation
of diazomethane, see: (b) Dallinger, D.; Pinho, V. D.; Gutmann, B.;
Kappe, C. O. J. Org. Chem. 2016, 81, 5814−5823. (c) Garbarino, S.;
Guerra, J.; Poechlauer, P.; Gutmann, B.; Kappe, C. O. J. Flow Chem.
2016, 6, 211−217.
(27) Uniqsis Ltd - Gas Addition Module II (GAM II). http://www.
April 29, 2019).
(28) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
5315−5316. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. A. Angew.
Chem., Int. Ed. 2000, 39, 1279−11281.
(29) Kitadai, N.; Maruyama, S. Geosci. Front. 2018, 9, 1117−1153.
(30) Kobayashi, T.; Nishiwaki, E.; Yamazoe, S.; Hoshino, M.;
Yoshino, S.; Mikuma, K. Process for the Production of Diaminomaleoni-
trile. U.S. Patent 3,971,820, July 27, 1974.
T. H. J. Am. Chem. Soc. 1994, 116, 9869−9882. (b) Bini, L.; Muller,
̈
C.; Wilting, J.; von Chrzanowski, L.; Spek, A. L.; Vogt, D. J. Am.
Chem. Soc. 2007, 129, 12622−12623. (c) Wilting, J.; Janssen, M.;
Mu
349, 350−356. (d) Bini, L.; Mu
2, 590−608.
(4) Gallas, K.; Pototschnig, G.; Adanitsch, F.; Stu
̈
ller, C.; Lutz, M.; Spek, A. L.; Vogt, D. Adv. Synth. Catal. 2007,
̈
ller, C.; Vogt, D. ChemCatChem 2010,
̈
tz, A. E.; Wrodnigg,
T. M. Beilstein J. Org. Chem. 2012, 8, 1619−1629.
(5) Webster, O. W.; Hartter, D. R.; Begland, R. W.; Sheppard, W. A.;
Cairncross, A. J. Org. Chem. 1972, 37, 4133−4136.
(6) Andrussow, L. Angew. Chem. 1935, 48, 593−595.
(7) Endter, F. Chem. Ing. Tech. 1958, 30, 305−310.
(8) Callahan, L.; Grasselli, R. K.; Milberger, E. C.; Strecker, H. A.
Ind. Eng. Chem. Prod. Res. Dev. 1970, 9, 134−142.
(9) National Research Council (US) Committee on Prudent
Practices in the Laboratory. In Prudent Practices in the Laboratory:
Handling and Management of Chemical Hazards; National Academies
Press: Washington, DC, 2011; Ch. 4, pp 45−82.
(10) Ziegler, K. Org. Synth. 1927, 7, 50−52.
(11) Kaloianova, F. P.; Fishbein, L. Hydrogen Cyanide and Cyanides:
Human Health Aspects; World Health Organization: Geneva, Switzer-
land, 2004.
(12) (a) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832−836.
(b) Yu, P.; Morandi, B. Angew. Chem., Int. Ed. 2017, 56, 15693−
15697. (c) Orecchia, P.; Yuan, W.; Oestreich, M. Angew. Chem., Int.
Ed. 2019, 58, 3579−3583. (d) Bhunia, A.; Bergander, K.; Studer, A. J.
Am. Chem. Soc. 2018, 140, 16353−16359.
(13) (a) Evans, D. A.; Carroll, G. L.; Truesdale, L. K. J. Org. Chem.
1974, 39, 914−917. (b) For a flow Strecker protocol using TMSCN,
see: Wiles, C.; Watts, P. Eur. J. Org. Chem. 2008, 2008, 5597−5613.
(14) (a) Gregory, R. J. H. Chem. Rev. 1999, 99, 3649−3682. (b) For
a safe flow production of acetone cyanohydrin, see: Heugebaert, T. S.
A.; Roman, B. I.; De Blieck, A.; Stevens, C. V. Tetrahedron Lett. 2010,
51, 4189−4191.
(15) Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.;
Shibasaki, M. Angew. Chem., Int. Ed. 2000, 39, 1650−1652.
(16) (a) Lee, H. G.; Milner, J. P.; Placzek, M. S.; Buchwald, S. L.;
Hooker, J. M. J. Am. Chem. Soc. 2015, 137, 648−651. (b) Zhao, W.;
Lee, H. G.; Buchwald, S. L.; Hooker, J. M. J. Am. Chem. Soc. 2017,
139, 7152−7155. (c) Sundermeier, M.; Zapf, A.; Beller, M. Angew.
Chem., Int. Ed. 2003, 42, 1661−1664.
(17) Grundke, C.; Opatz, T. Green Chem. 2019, 21, 2362−2366.
(18) Kristensen, S. K.; Eikeland, E. Z.; Taarning, E.; Lindhardt, A.
T.; Skrydstrup, T. Chem. Sci. 2017, 8, 8094−8105.
(19) (a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H.
Chem. Rev. 2017, 117, 11796−11893. (b) Movsisyan, M.; Delbeke, E.
I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V.
Chem. Soc. Rev. 2016, 45, 4892−4928. (c) Gutmann, B.; Cantillo, D.;
Kappe, C. O. Angew. Chem., Int. Ed. 2015, 54, 6688−6728.
́
(d) Gerardy, R.; Emmanuel, N.; Toupy, T.; Kassin, V. E.;
Tshibalonza, N. N.; Schmitz, M.; Monbaliu, J. C. M. Eur. J. Org.
Chem. 2018, 2018, 2301−2351.
(20) Poechlauer, P. Chim. Oggi/Chem. Today 2012, 30, 51−54.
(21) Acke, D. R. J.; Stevens, C. V. Green Chem. 2007, 9, 386−390.
(22) Brzozowski, M.; O’Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem.
Res. 2015, 48, 349−362.
(23) (a) Koos, P.; Gross, U.; Polyzos, A.; O’Brien, M.; Baxendale, I.;
Ley, S. V. Org. Biomol. Chem. 2011, 9, 6903−6908. (b) Polyzos, A.;
O’Brien, M.; Petersen, T. P.; Baxendale, I. R.; Ley, S. V. Angew. Chem.,
Int. Ed. 2011, 50, 1190−1193. (c) O’Brien, M.; Taylor, N.; Polyzos,
A.; Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2, 1250−1257.
(d) Cranwell, P. B.; O’Brien, M.; Browne, D. L.; Koos, P.; Polyzos, A.;
́
Pena-Lopez, M.; Ley, S. V. Org. Biomol. Chem. 2012, 10, 5774−5779.
̃
(24) Mastronardi, F.; Gutmann, B.; Kappe, C. O. Org. Lett. 2013, 15,
5590−5593.
E
Org. Lett. XXXX, XXX, XXX−XXX