Molecular Pharmaceutics
Article
proliferation of human ovarian cancer cells: a possible target for
combination therapy with anti-proliferative aminopeptidase inhibitors.
Biochem. Pharmacol. 2010, 80, 811−8.
Notes
The authors declare no competing financial interest.
(12) Esslinger, C. S.; Agarwal, S.; Gerdes, J.; Wilson, P. A.; Davis, E.
S.; Awes, A. N.; O’Brien, E.; Mavencamp, T.; Koch, H. P.; Poulsen, D.
J.; Rhoderick, J. F.; Chamberlin, A. R.; Kavanaugh, M. P.; Bridges, R. J.
The substituted aspartate analogue L-beta-threo-benzyl-aspartate
preferentially inhibits the neuronal excitatory amino acid transporter
EAAT3. Neuropharmacology 2005, 49, 850−61.
ACKNOWLEDGMENTS
■
The authors thank Dr. Carita Huang for editorial assistance.
This work was supported in part by grants from Stand-Up 2
Cancer (SU2C), PA Health Department, and National
Institutes of Health (CA-164490; AG-022559; DK-081342).
(13) Bridges, R. J.; Esslinger, C. S. The excitatory amino acid
transporters: pharmacological insights on substrate and inhibitor
specificity of the EAAT subtypes. Pharmacol. Ther. 2005, 107, 271−85.
(14) Hanessian, S.; Margarita, R.; Hall, A.; Luo, X. 1,2-Asymmetric
induction in dianionic allylation reactions of amino acid derivatives -
synthesis of functionally useful, enantiopure aspartates and constrained
scaffolds. Tetrahedron Lett. 1998, 39, 5883−5886.
(15) Lee, T. S.; Ahn, S. H.; Moon, B. S.; Chun, K. S.; Kang, J. H.;
Cheon, G. J.; Choi, C. W.; Lim, S. M. Comparison of 18F-FDG, 18F-
FET and 18F-FLT for differentiation between tumor and inflammation
in rats. Nucl. Med. Biol. 2009, 36, 681−6.
(16) Bungard, C. I.; McGivan, J. D. Glutamine availability up-
regulates expression of the amino acid transporter protein ASCT2 in
HepG2 cells and stimulates the ASCT2 promoter. Biochem. J. 2004,
382, 27−32.
(17) Bungard, C. I.; McGivan, J. D. Identification of the promoter
elements involved in the stimulation of ASCT2 expression by
glutamine availability in HepG2 cells and the probable involvement
of FXR/RXR dimers. Arch. Biochem. Biophys. 2005, 443, 53−9.
(18) McGivan, J. D.; Bungard, C. I. The transport of glutamine into
mammalian cells. Front. Biosci. 2007, 12, 874−82.
(19) Plathow, C.; Weber, W. A. Tumor cell metabolism imaging. J.
Nucl. Med. 2008, 49 (Suppl 2), 43S−63S.
(20) McConathy, J.; Yu, W.; Jarkas, N.; Seo, W.; Schuster, D. M.;
Goodman, M. M. Radiohalogenated nonnatural amino acids as PET
and SPECT tumor imaging agents. Med. Res. Rev. 2012, 32, 868−905.
(21) Huang, C.; McConathy, J. Radiolabeled amino acids for
oncologic imaging. J. Nucl. Med. 2013, 54, 1007−10.
(22) Oka, S.; Okudaira, H.; Ono, M.; Schuster, D. M.; Goodman, M.
M.; Kawai, K.; Shirakami, Y. Differences in Transport Mechanisms of
trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Inflamma-
tion, Prostate Cancer, and Glioma Cells: Comparison with L-[Methyl-
C]Methionine and 2-Deoxy-2-[18F]Fluoro-D-Glucose. Mol. Imaging
Biol. 2014, 16, 322−329.
(23) Okudaira, H.; Nakanishi, T.; Oka, S.; Kobayashi, M.; Tamagami,
H.; Schuster, D. M.; Goodman, M. M.; Shirakami, Y.; Tamai, I.; Kawai,
K . K i n e t i c a n a l y s e s o f t r a n s - 1 - a m i n o - 3 - [ 1 8 F ] -
fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes
expressing human ASCT2 and SNAT2. Nucl. Med. Biol. 2013, 40,
670−5.
(24) Sorensen, J.; Owenius, R.; Lax, M.; Johansson, S. Regional
distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a
tracer of amino acid transport, in subjects with primary prostate
cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 394−402.
(25) Turkbey, B.; Mena, E.; Shih, J.; Pinto, P. A.; Merino, M. J.;
Lindenberg, M. L.; Bernardo, M.; McKinney, Y. L.; Adler, S.; Owenius,
R.; Choyke, P. L.; Kurdziel, K. A. Localized Prostate Cancer Detection
with 18F FACBC PET/CT: Comparison with MR Imaging and
Histopathologic Analysis. Radiology 2014, 270, 849−56.
(26) Okudaira, H.; Shikano, N.; Nishii, R.; Miyagi, T.; Yoshimoto,
M.; Kobayashi, M.; Ohe, K.; Nakanishi, T.; Tamai, I.; Namiki, M.;
Kawai, K. Putative Transport Mechanism and Intracellular Fate of
Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human
Prostate Cancer. J. Nucl. Med. 2011, 52, 822−9.
(27) Oka, S.; Okudaira, H.; Yoshida, Y.; Schuster, D. M.; Goodman,
M. M.; Shirakami, Y. Transport mechanisms of trans-1-amino-3-
fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl.
Med. Biol. 2012, 39, 109−119.
(28) Schuster, D. M.; Savir-Baruch, B.; Nieh, P. T.; Master, V. A.;
Halkar, R. K.; Rossi, P. J.; Lewis, M. M.; Nye, J. A.; Yu, W.; Bowman,
ABBREVIATIONS
■
[11C]Gln, L-5-[11C]glutamine, 1; [18F](2S,4R)-4-FGln, [18F]-
(2S,4R)-4-fluoroglutamine, 2; [18F](2S,4R)-4-FPGln, [18F]-
(2S,4R)-4-(3-fluoropropyl)glutamine, 3; [18F](2S,4S)-4-
FPGln, [18F](2S,4S)-4-(3-fluoropropyl)glutamine, 4; ASC,
alanine-serine-cysteine preferring amino acid transporter
system; ASCT2, system ASC transporter subtype 2; BCH, 2-
amino-bicylo[2.2.1]heptane-2-carboxylic acid; MeAIB, N-meth-
yl-α-aminoisobutyric acid; FACBC, 3-[18F]fluoro-cyclobutyl-1-
carboxylic acid; FC, flash chromatography; FDG, 2-[18F]fluoro-
2-deoxy-D-glucose; FET, O-(2-[18F]fluoroethyl)-L-tyrosine;
[3H]Gln, L-[3,4-3H(N)]-glutamine; HPLC, High-performance
liquid chromatography; HRMS, High-resolution mass spec-
trometry; MeAIB, N-methyl-α-aminoisobutyric acid; TCA,
trichloroacetic acid; TFA, trifluoroacetic acid; PET, positron
emission tomography
REFERENCES
■
(1) Koppenol, W. H.; Bounds, P. L.; Dang, C. V. Otto Warburg’s
contributions to current concepts of cancer metabolism. Nat. Rev.
Cancer 2011, 11, 325−37.
(2) Jadvar, H.; Alavi, A.; Gambhir, S. S. 18F-FDG uptake in lung,
breast, and colon cancers: molecular biology correlates and disease
characterization. J. Nucl. Med. 2009, 50, 1820−7.
(3) Wise, D. R.; Thompson, C. B. Glutamine addiction: a new
therapeutic target in cancer. Trends Biochem. Sci. 2010, 35, 427−33.
(4) Wise, D. R.; Ward, P. S.; Shay, J. E.; Cross, J. R.; Gruber, J. J.;
Sachdeva, U. M.; Platt, J. M.; Dematteo, R. G.; Simon, M. C.;
Thompson, C. B. Hypoxia promotes isocitrate dehydrogenase-
dependent carboxylation of alpha-ketoglutarate to citrate to support
cell growth and viability. Proc. Natl. Acad. Sci. U. S. A. 2011, 108,
19611−6.
(5) Le, A.; Lane, A. N.; Hamaker, M.; Bose, S.; Gouw, A.; Barbi, J.;
Tsukamoto, T.; Rojas, C. J.; Slusher, B. S.; Zhang, H.; Zimmerman, L.
J.; Liebler, D. C.; Slebos, R. J.; Lorkiewicz, P. K.; Higashi, R. M.; Fan,
T. W.; Dang, C. V. Glucose-independent glutamine metabolism via
TCA cycling for proliferation and survival in B cells. Cell Metab. 2012,
15, 110−21.
(6) Daye, D.; Wellen, K. E. Metabolic reprogramming in cancer:
Unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev.
Biol. 2012, 23, 362−9.
(7) Qu, W.; Oya, S.; Lieberman, B. P.; Ploessl, K.; Wang, L.; Wise, D.
R.; Divgi, C. D.; Chodosh, L. A.; Thompson, C. B.; Kung, H. F.
Preparation and Characterization of L-[5-11C]-Glutamine for Meta-
bolic Imaging of Tumors. J. Nucl. Med. 2012, 53, 98−105.
(8) Lieberman, B. P.; Ploessl, K.; Wang, L.; Qu, W.; Zha, Z.; Wise, D.
R.; Chodosh, L. A.; Belka, G.; Thompson, C. B.; Kung, H. F. PET
imaging of glutaminolysis in tumors by 18F-(2S,4R)-4-fluoroglutamine.
J. Nucl. Med. 2011, 52, 1947−55.
(9) Qu, W.; Zha, Z.; Ploessl, K.; Lieberman, B. P.; Zhu, L.; Wise, D.
R.; Thompson, C. B.; Kung, H. F. Synthesis of optically pure 4-fluoro-
glutamines as potential metabolic imaging agents for tumors. J. Am.
Chem. Soc. 2011, 133, 1122−33.
(10) Dang, C. V.; Hamaker, M.; Sun, P.; Le, A.; Gao, P. Therapeutic
targeting of cancer cell metabolism. J. Mol. Med. 2011, 89, 205−12.
(11) Fan, X.; Ross, D. D.; Arakawa, H.; Ganapathy, V.; Tamai, I.;
Nakanishi, T. Impact of system L amino acid transporter 1 (LAT1) on
3865
dx.doi.org/10.1021/mp500236y | Mol. Pharmaceutics 2014, 11, 3852−3866