ARTICLES
a
21
b
23
2
0
2
2
0
.5 h
1
8 19 20 21 22 23 24 25 26 27 28 29 30
12
14
16
18
Time (min)
20
22
24
c
20
CD spectrum of synthetic S100A4
2
2
1
5
0
5
0
5
3
h
1
1
8 19 20 21 22 23 24 25 26 27 28 29 30
2
2
–
6
h
–10
–15
–20
1
1
8
8
19 20 21 22 23 24 25 26 27 28 29 30
2
2
Purified
product
200
210
220
230
240
250
260
270
280
19 20 21 22 23 24 25 26 27 28 29 30
Time (min)
Wavelength (nm)
Figure 4 | Monitoring of the coupling and folding processes in the synthesis of S100A4. a, Oxezetadine ligation of 20 and 21. To facilitate monitoring, the
Fmoc group was retained on the N-terminus of 21, which displays greatly increased absorbance compared to 20. b, HPLC of final coupled and purified
product 23. c, CD spectrum of folded synthetic protein S100A4.
8
.
Wucherpfennig, T. G., Pattabiraman, V. R., Limberg, F. R. P., Ruiz-Rodríguez, J.
Bode, J. W. Traceless preparation of C-terminal α-ketoacids for chemical
protein synthesis by α-ketoacid–hydroxylamine ligation: synthesis of SUMO2/3.
Angew. Chem. Int. Ed. 53, 12248–12252 (2014).
Wucherpfennig, T. G., Rohrbacher, F., Pattabiraman, V. R. & Bode, J. W.
Formation and rearrangement of homoserine depsipeptides and depsiproteins
in the α-ketoacid–hydroxylamine ligation with 5-oxaproline. Angew. Chem Int.
Ed. 53, 12244–12247 (2014).
22. Kiss, B. et al. Crystal structure of the S100A4-nonmuscle myosin IIA tail
fragment complex reveals an asymmetric target binding mechanism. Proc. Natl
Acad. Sci. USA 109, 6048–6053 (2012).
23. Schäfer, B. W. & Heizmann, C. W. The S100 family of EF-hand calcium-binding
proteins: functions and pathology. Trends Biochem. Sci. 21, 134–140 (1996).
24. Sohma, Y., Sasaki, M., Hayashi, Y., Kimura, T. & Kiso, Y. Novel and efficient
synthesis of difficult sequence-containing peptides through O–N intramolecular
acyl migration reaction of O-acyl E isopeptides. Chem. Commun.
124–125 (2004).
25. Avital-Shmilovici, M. et al. Fully convergent chemical synthesis of ester insulin:
determination of the high resolution X-ray structure by racemic protein
crystallography. J. Am. Chem. Soc. 135, 3173–3185 (2013).
26. Kalia, J. & Raines, R. T. Advances in bioconjugation. Curr. Org. Chem. 14,
138–147 (2010).
&
9
.
1
0. Magers, D. H. & Davis, S. R. Ring strain in the oxazetidines. J. Mol. Struc.
Theochem. 487, 205–210 (1999).
1. Florio, S., Capriati, V., & Luisi, R. in Comprehensive Heterocyclic Chemistry III
Vol. 2 (eds Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V. & Taylor, R. J. K.)
Ch. 14, 689–711 (Elsevier, 2008).
2. Snider, B. B. & Duvall, J. R. Synthesis of the 4-methyl-1,2-oxazetidine-4-
carboxylic acid moiety of the originally proposed halipeptin A and B structures.
Tetrahedron Lett. 44, 3067–3070 (2003).
3. Denicola, A., Einhorn, C., Einhorn, J. & Luche, J. L. Intramolecular alkylation of
carboxylic-acids—application to the synthesis of Boc-protected cyclic amino-
acids. J. Chem. Soc. Chem. Commun. 879–880 (1994).
4. Casadei, M. A., Galli, C. & Mandolini, L. Ring-closure reactions. 22. Kinetics of
cyclization of diethyl (ω-bromoalkyl)malonates in the range of 4- to 21-
membered rings. Role of ring strain. J. Am. Chem. Soc. 106, 1051–1056 (1984).
5. Baldwin, J. E. Rules for ring closure. Chem. Commun. 734–736 (1976).
6. Alabugin, I. V. & Gilmore, K. Finding the right path: Baldwin ‘rules for ring
closure’ and stereoelectronic control of cyclizations. Chem. Commun. 49,
1
1
1
1
27. Li, X., Lam, H. Y., Zhang, Y. & Chan, C. K. Salicylaldehyde ester-induced
chemoselective peptide ligations: enabling generation of natural peptidic
linkages at the serine/threonine sites. Org. Lett. 12, 1724–1727 (2010).
28. Zhang, Y., Xu, C., Lam, H. Y., Lee, C. L., & Li, X. Protein chemical synthesis by
serine and threonine ligation. Proc. Natl Acad. Sci. USA 110, 6657–6662 (2012).
Acknowledgements
This work was supported by the Swiss National Science Foundation (200020_150073) and
ETH Zürich. F. Thuaud, S. Baldauf and M. Dao are thanked for contributions to the
synthesis of compound 1, V. Pattabiraman for discussions, F. Saito for advice on kinetics
and C. Wolfrum for biological evaluation.
1
1
1
124–11250 (2013).
7. Tanino, K. et al. Total synthesis of Solanoeclepin A. Nature Chem. 3,
84–488 (2011).
1
1
Author contributions
4
J.W.B. and I.P. contributed equally to the design of the study. J.B., with contributions from
I.P., wrote the paper. I.P performed the experiments and wrote the Supplementary
Information.
8. Medjahdi, M., Gonzalez-Gomez, J. C., Foubelo, F. & Yus, M. Stereoselective
synthesis of azetidines and pyrrolidines from N-tert-butylsulfonyl(2-
aminoalkyl)oxiranes. J. Org. Chem. 74, 7859–7865 (2009).
9. Davies, S. G., Jones, S., Sanz, M. A., Teixeira, F. C. & Fox, J. F. A novel [2,3]
intramolecular rearrangement of N-benzyl-O-allylhydroxylamines. Chem.
Commun. 2235–2236 (1998).
1
Additional information
requests for materials should be addressed to J.W.B.
2
0. Wuts, P. G. M. & Greene, T. W. in Greene’s Protective Groups in Organic
Synthesis (Wiley, 2006).
2
1. Vallely, K. M. et al. Solution structure of human Mts1 (S100A4) as determined Competing financial interests
by NMR spectroscopy. Biochemistry 41, 12670–12680 (2002).
The authors declare no competing financial interests.
5
©
2015 Macmillan Publishers Limited. All rights reserved