of various γ-amino butyric acid derivatives.12 Herein, we
describe the first example of copper-catalyzed enantioselec-
tive 1,4-hydrosilylation of a selection of β-(acylamino)-
acrylates under air atmosphere in high yields and with
uniformly good to excellent ee values (up to 99%) irrespec-
tive of the use of (E)- or (Z)-substrates.
Scheme 1. Rh-, Ru-, or Ir-Catalyzed Asymmetric Hydrogena-
tion of β-Substituted β-(Acylamino)acrylates
Table 1. Effect of Additives on the Copper-Catalyzed Asym-
metric 1,4-Reduction of (Z)-2a in Aira
corresponding (Z)-substrates, which are the major isomers
formed in most current synthetic protocols.3a,4a Although
some Rh6 and Ru7catalysts can hydrogenate (Z)-sub-
strateswithcompetitivelyhighdegreesofenantioinduction
as those for (E)-isomers, the development of practical and
cost-effective catalytic systems that can perform well for
both isomers, especially for (Z)-isomers, is still highly
desirable.
In the past decade, copper-mediated asymmetric
1,4-hydrosilylation of various R,β-unsaturated Michael
acceptors has gained considerable attention8,9 owing to the
economic benefits of using nonprecious metal, the mild
reaction conditions, and the technical simplicity, whereas
the application of chiral copper catalysts in the 1,4-reduction
of β-dehydroamino acid derivatives is relatively unexplored.
Noteworthy is the elegant report in 2004 by Buchwald et al.10
on the copper-BINAP11 catalyst system, which allowed for
the asymmetric conjugate hydrosilylation of various β-ami-
no-substituted R,β-unsaturated esters to β-azaheterocyclic
acid derivatives of excellent enantiopurities. Later on, Zheng
and co-workers successfully applied this system in the synthesis
entry
alcohol
base [mol %]
t (h)
yield (%)b
ee (%)c
1
2
3d
4d
5
15
15
72
72
1
27
99
55
97e
97
29
45
87
84
88
40
13
86
60
79
79
80
91
84
81
83
81
85
85
80
72
80
84
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuOH
t-BuONa [15]
t-BuONa [15]
t-BuONa [5]
t-BuONa [10]
t-BuONa [15]
t-BuONa [15]
t-BuONa [15]
t-BuONa [15]
t-BuOK [15]
MeONa [15]
t-BuONa [15]
6
1
7
1
8
15
1
9
i-PrOH
EtOH
10
11
12
13
14f
1
MeOH
t-BuOH
t-BuOH
t-BuOH
1
1
1
1
(6) Examples include the following: (a) Tang, W.; Zhang, X. Org.
Lett. 2002, 4, 4159–4161. (b) Lee, S.-G.; Zhang, Y. J. Org. Lett. 2002, 4,
a Reaction conditions: 0.15-1 mmol of substrate, substrate concen-
tration = 0.2-0.5 M in THF. b Determined by NMR and GC analysis.
c The ee values were determined by chiral GC analysis. The absolute
configuration was determined by comparing the retention times with known
data (see the Supporting Information). d Reaction temperature = -20 °C.
e The isolated yield was 93%. f N2 atmosphere.
~
2429–2431. (c) Pena, D.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L.
J. Am. Chem. Soc. 2002, 124, 14552–14553. (d) Tang, W.; Wang, W.;
Chi, Y.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 3509–3511. (e) Wu,
H.-P.; Hoge, G. Org. Lett. 2004, 6, 3645–3647. (f) Lefort, L.; Boogers,
J. A. F.; de Vries, A. H. M.; de Vries, J. G. Org. Lett. 2004, 6, 1733–1735.
(g) Hu, X.-P.; Zheng, Z. Org. Lett. 2005, 7, 419–422. (h) Tang, W.;
Capacci, A. G.; White, A.; Ma, S.; Rodriguez, S.; Qu, B.; Savoie, J.;
Patel, N. D.; Wei, X.; Haddad, N.; Grinberg, N.; Yee, N. K.; Krishna-
murthy, D.; Senanayake, C. H. Org. Lett. 2010, 12, 1104–1107. (i)
Zhang, X.; Huang, K.; Hou, G.; Cao, B.; Zhang, X. Angew. Chem.,
Int. Ed. 2010, 49, 6421–6424.
(7) Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. J. Am.
Chem. Soc. 2002, 124, 4952–4953.
(8) For some recent reviews, see: (a) Riant, O.; Mostefai, N.; Cour-
marcel, J. Synthesis 2004, 2943–2958. (b) Rendler, S.; Oestreich, M.
Angew. Chem., Int. Ed. 2007, 46, 498–504. (c) Deutsch, C.; Krause, N.;
Lipshutz, B. H. Chem. Rev. 2008, 108, 2916–2927. (d) Lipshutz, B. H.
Synlett 2009, 509–524 and references cited therein.
We commenced our studies by examining the ability of
chiral dipyridylphosphine ligand P-Phos (Table1, 1a),13
which was previously demonstratedtobe highly efficient in
the Cu(II)-catalyzed asymmetric hydrosilylation of a di-
verse assortment of prochiral ketones,14 to promote the
conjugate reduction of the model substrate (Z)-2a. In the
presence of 5 mol % of Cu(OAc)2 H2O, 2 mol % of (S)-1a,
3
and 10 equiv of PMHS (polymethylhydrosiloxane), the
reaction proceeded in THF at room temperature to only
27% yield (GC and NMR) after 15 h to furnished (R)-3a in
79% ee (entry 1). Similar to previous findings,8c,9d,9e,10,15
(9) Examples include the following: (a) Moritani, Y.; Apella, D. H.;
Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797–
6798. (b) Lipshutz, B. H.; Servesko, J. M. Angew. Chem., Int. Ed. 2003,
42, 4789–4792. (c) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira,
E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473–9474. (d)
Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
11253–11258. (e) Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am.
Chem. Soc. 2004, 126, 8352–8353. (f) Czekelius, C.; Carreira, E. M.
Angew. Chem., Int. Ed. 2003, 42, 4793–4795. (g) Czekelius, C.; Carreira,
E. M. Org. Lett. 2004, 6, 4575–4577. (h) Lee, D.; Kim, D.; Yun, J.
(12) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Wang, D.-Y.;
Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 6022–6024.
(13) (a) Wu, J.; Chan, A. S. C. Acc. Chem. Res. 2006, 39, 711–720. (b)
Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C.; Wong,
W. T. J. Am. Chem. Soc. 2000, 122, 11513–11514.
(14) (a) Wu, J.; Ji, J.-X.; Chan, A. S. C. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 3570–3575. (b) Zhang, X.-C.; Wu, Y.; Yu, F.; Wu, F.-F.; Wu,
J.; Chan, A. S. C. Chem.;Eur. J. 2009, 15, 5888–5891.
ꢀ
Angew. Chem., Int. Ed. 2006, 45, 2785–2787. (i) Llamas, T.; Arrayas,
R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2007, 46, 3329–3332.
(10) Rainka, M. P.; Aye, Y.; Buchwald, S. L. Proc. Natl. Acad. Sci. U.
S.A. 2004, 101, 5821–5823.
(11) BINAP = 2,20-bis(diphenyllphosphino)-1,10-binaphthyl: (a)
Noyori, R.; Takaya, H. Acc .Chem. Res. 1990, 23, 345–350. (b) Noyori,
R. Angew. Chem., Int. Ed. 2002, 41, 2008–2022.
(15) (a) Yun, J.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 5640–
5644. (b) Hays, D. S.; Fu, G. C. Tetrahedron 1999, 55, 8815–8832.
Org. Lett., Vol. 13, No. 7, 2011
1755