Molecules 2018, 23, 177
7 of 8
5.
6.
Mäser, P.; Wittlin, S.; Rottmann, M.; Wenzler, T.; Kaiser, M.; Brun, R. Antiparasitic agents: New drugs on the
horizon. Curr. Opin. Pharmacol. 2012, 12, 562–566. [CrossRef] [PubMed]
Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.;
Wyatt, P.G.; Wyllie, S.; et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing
7.
8.
9.
Centers for Disease Control and Prevention. Neglected Tropical Diseases. Available online: http://www.
Gravel, J.; Schmitzer, A.R. Imidazolium and benzimidazolium-containing compounds: From simple toxic
salts to highly bioactive drugs. Org. Biomol. Chem. 2017, 15, 1051–1071. [CrossRef] [PubMed]
Faral-Tello, P.; Liang, M.; Mahler, G.; Wipf, P.; Robello, C. Imidazolium compounds are active against all
stages of Trypanosoma cruzi. Int. J. Antimicrob. Agents 2014, 43, 262–268. [CrossRef] [PubMed]
10. Kishore, K.G.; Ghashghaei, O.; Estarellas, C.; Mestre, M.M.; Monturiol, C.; Kielland, N.; Kelly, J.M.;
Francisco, A.F.; Jayawardhana, S.; Muñoz-Torrero, D.; et al. Insertion of isocyanides into N–Si bonds:
Multicomponent reactions with azines leading to potent antiparasitic compounds. Angew. Chem. Int. Ed.
11. Ghashghaei, O.; Revés, M.; Kielland, N.; Lavilla, R. Modular access to tetrasubstituted imidazolium salts
through acid-catalyzed addition of isocyanides to propargylamines. Eur. J. Org. Chem. 2015, 4383–4388.
12. Li, C.-J.; Wei, C. Highly efficient Grignard-type imine additions via C–H activation in water and under
solvent-free conditions. Chem. Commun. 2002, 268–269. [CrossRef]
13. Tong, S.; Wang, Q.; Wang, M.-X.; Zhu, J. Tuning the reactivity of isocyano group: Synthesis of imidazoles
and imidazoliums from propargylamines and isonitriles in the presence of multiple catalysts. Angew. Chem.
14. Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to
nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 5022–5027. [CrossRef]
15. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to
estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997
,
16. Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based
contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000, 43,
17. Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that
influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [CrossRef] [PubMed]
18. Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High throughput artificial membrane permeability
assay for blood-brain barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [CrossRef]
19. Viswanadhan, V.N.; Balan, C.; Hulme, C.; Cheetham, J.C.; Sun, Y. Knowledge-based approaches in the design
and selection of compound libraries for drug discovery. Curr. Opin. Drug Discov. Dev. 2002, 5, 400–406.
20. Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: The development of a central
nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike
21. Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central nervous system multiparameter optimization
desirability: Application in drug discovery. ACS Chem. Neurosci. 2016, 7, 767–775. [CrossRef] [PubMed]
com (accessed on 11 December 2017).
23. Wilkinson, S.R.; Prathalingam, S.R.; Taylor, M.C.; Ahmed, A.; Horn, D.; Kelly, J.M. Functional characterisation
of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic. Biol. Med. 2006, 40,
24. Kendall, G.; Wilderspin, A.F.; Ashall, F.; Miles, M.A.; Kelly, J.M. Trypanosoma cruzi glycosomal
glyceraldehyde-3-phosphate dehydrogenase does not conform to the “hotspot” topogenic signal model.
EMBO J. 1990, 9, 2751–2758. [PubMed]