8322
D. J. Upadhyaya et al. / Tetrahedron Letters 48 (2007) 8318–8322
15. (a) Jin, T. S.; Sun, G.; Li, Y. W.; Li, T. S. Green Chem.
2002, 4, 255–256; (b) Wang, B.; Yang, L.; Suo, J. Synth.
Commun. 2003, 33, 3929–3934; (c) Bo, W.; Ming, Y. L.;
Shuan, S. J. Tetrahedron Lett. 2003, 44, 5037–5039; (d) Li,
J. T.; Han, J. F.; Yang, J. H.; Li, T. S. Ultrason.
Sonochem. 2003, 10, 119–122; (e) Wang, B.; Gu, Y. L.;
Luo, G. Y.; Yang, T.; Yang, L. M.; Suo, J. S. Tetrahedron
Lett. 2004, 45, 3369–3372; (f) Nagarajan, R.; Magesh, C.
J.; Perumal, P. T. Synthesis 2004, 69–74; (g) Sing, P. R.;
Singh, D. U.; Samant, S. D. Synlett 2004, 1909–1912; (h)
Heydari, A.; Khaksar, S.; Pourayoubi, M.; Mahjoub, A.
R. Tetrahedron Lett. 2007, 48, 4059–4060; (i) An, L.-T.;
Zou, J.-P.; Zhang, L.- L.; Zhang, Y. Tetrahedron Lett.
2007, 48, 4297–4300.
In conclusion, sulfamic acid acts as a mild, regioselec-
tive, highly efficient, and recyclable catalyst for N-Boc
protection of various amines: open chain, cyclic, ali-
phatic, heterocyclic, aryl, and heteroaryl, 1,2-diaryl
amines besides aminoalcohols. The advantages of this
protocol are: (1) high activity and good chemoselectivity
(2) no side reactions (3) ease of handling and cost effi-
ciency of the catalyst, (4) wide substrate scope and gen-
erality in the presence of various other functions; (5)
effective reusability of catalyst, making the protocol
environmentally benign.
Acknowledgments
16. Jia, X.; Huang, J. L.; Li, S.; Yang, Q. Synlett 2007, 806–
808.
MIUR (FIRB 2003) is acknowledged for financial sup-
port. DJU acknowledges ASP (Associazione per lo Svi-
luppo Scientifico e Technologico del Piemonte), Torino
for the research fellowship.
17. (a) Mason, T. J.; Lorimer, J. P. In Applied Sonochemistry:
The Uses of Power Ultrasound in Chemistry and Process-
ing; Wiley-VCH, 2002; (b) Mason, T. J. Practical Sono-
chemistry User Guide to Applications in Chemistry and
Chemical Engineering; Ellis Horwood: Chichester, UK,
1991.
References and notes
18. (a) Cravotto, G.; Cintas, P. Chem. Soc. Rev. 2006, 35, 180–
196; (b) Synthetic Organic Sonochemistry; Luche, J.-L.,
Ed.; Plenum Press: New York, 1998; Sonochemistry: The
Uses of Ultrasound in Chemistry; Mason, T. J., Ed.; Royal
Society of Chemistry, 1990.
19. Varala, R.; Navula, S.; Adapa, S. R. J. Org. Chem. 2006,
71, 8283–8286.
20. Reddy, M. S.; Narender, M.; Nageswar, Y. V. D.; Rao,
K. R. Synlett 2006, 1110–1112.
1. (a) Greene, T. W.; Wuts, P. G. M. In Protecting Group in
Organic Synthesis; John Wiley and Sons: New York, 1999;
(b) Kocienski, P. J. In Protecting Groups; Georg Thieme:
New York, 2000.
2. (a) Wuensch, E. In Houben-Weyl Methods of Organic
Chemistry, 4th ed.; Muller, E., Bayer, O., Meerwein, H.,
Ziegler, K., Eds.; Georg Thieme: Stuttgart, 1974; Vol. 15/
1, p 46; (b) Xiuo, X. Yi.; Ngu, K.; Choa, C.; Patel, D. V. J.
Org. Chem. 1997, 62, 6968–6973.
21. Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006,
8(15), 3259–3262.
22. N-Boc protection of amines catalyzed by sulfamic acid,
under conventional conditions: (Boc)2O (1.1 equiv), sulfa-
mic acid (5 mol %) were mixed together neat in 10 ml
round-bottom flask at 25–28 ꢀC. The amine (1 equiv) was
added and the resulting mixture was stirred at room
temperature. The progress of the reaction was monitored
by TLC analysis. The solid product was merely filtered off
and washed with excess cold water. If the product was a
liquid, its extraction was carried out using ethyl acetate.
The organic layer was washed with water (3 · 20 ml) and
brine (2 · 20 ml) and dried over anhydrous Na2SO4. The
solvent was distilled off under vacuum to yield the highly
pure N-Boc derivative as an oil. In some cases, the
purification was done by column chromatography using
silica gel (60–120 mesh) using petroleum ether–ethyl
acetate (8:2) as an eluent.
23. N-Boc protection of amines catalyzed by sulfamic acid: US-
assisted procedure: (Boc)2O (1.1 equiv) and sulfamic acid
(5 mol %) were mixed together neat in 10 ml round-
bottom flask at 25–28 ꢀC. The amine (1 equiv) was added
and the resulting mixture was sonicated at room temper-
ature in an US bath having a frequency of 33 kHz and an
input power of 100 W. The flask was suspended at the
center of the bath. The progress of the reaction was
monitored by TLC analysis. Products were recovered as
detailed in Ref. 22.
3. (a) Burk, M. J.; Allen, J. G. J. Org. Chem. 1997, 62, 7054–
7057; (b) Basel, Y.; Hassner, A. J. Org. Chem. 2000, 65,
6368–6380.
4. Kelly, T. A.; McNeil, D. W. Tetrahedron Lett. 1994, 35,
9003–9006.
5. Barcelo, G.; Senet, J.-P.; Sennyey, G. Synthesis 1986, 627–
632.
6. Itoh, M.; Hagiwara, D.; Kamiya, T. Tetrahedron Lett.
1975, 4393–4394.
7. Sharma, G. V. S.; Reddy, J. J.; Lakshmi, P. S.; Krishna,
P. R. Tetrahedron Lett. 2004, 45, 6963–6965.
8. Heydari, A.; Hosseini, S. E. Adv. Synth. Catal. 2005, 347,
1929–1932.
9. Chakraborti, A. K.; Chankeshwara, S. V. Org. Biomol.
Chem. 2006, 4, 2769–2771.
10. Chakraborti, A. K.; Chankeshwara, S. V. Tetrahedron
Lett. 2006, 47, 1087–1091.
11. Bartoli, G.; Bosco, M.; Locatelli, M.; Marcantoni, E.;
Massaccesi, M.; Melchiorre, P.; Sambri, L. Synlett 2004,
1794–1798.
12. Suryakiran, N.; Prabhakar, P.; Reddy, S. T.; Rajesh, K.;
Venkateswarlu, Y. Tetrahedron Lett. 2006, 47, 8039–8042.
13. Das, B.; Venkateswarlu, K.; Krishnaiah, M.; Holla, H.
Tetrahedron Lett. 2006, 47, 7551–7556.
14. Pandey, R. K.; Dagade, S. P.; Upadhyay, R. K.; Dongare,
M. K.; Kumara, P. ARKIVOC 2002, vii, 28–33.