Page 5 of 7
ACS Medicinal Chemistry Letters
rodecanones, a novel series of highly selective and potent
1
2
3
4
5
6
7
8
SSTR5 antagonists with diverse structural features and miniꢀ
mal offꢀtarget activity profiles regarding hERG, PXR, and
CYP inhibition. We demonstrated that the exemplar SSTR5
antagonist 10 significantly lowers glucose excursions in a
doseꢀdependent manner in a rodent diabetic model without
risk of hypoglycemia. The compound increased pancreatic
insulin secretion as well as total and active GLPꢀ1 release, and
demonstrates synergistic effects in combination with DPPꢀ4
inhibitors. These results indicate that selective SSTR5 antagoꢀ
nists could serve as therapeutic agents for the treatment of
type 2 diabetes as either monotherapy or in combination with
existing antiꢀdiabetic drugs such as sitagliptin. Further optimiꢀ
zation of this lead compound to achieve desirable physical
chemical and pharmacokinetic properties are discussed in the
following manuscript in this issue.
types in the pancreatic islets of mice and rats. J. Histochem. Cyto-
chem. 2004, 52, 391–400.
(6) Fagan S.; P.; Azizzadeh A.; Moldovan S.; Ray M. K.; Adrian
T. E.; Ding X.; Coy, D. H.; Brunicardi, F. C. Insulin secretion is inꢀ
hibited by subtype five somatostatin receptor in the mouse. Surgery
1998, 124, 254–259.
(7) Strowski, M. Z.; Kohler, M; Chen, H. Y.; Trumbauer, M. E.;
Li, Z.; Szalkowski, D.; GopalꢀTruter, S.; Fisher, J. K.; Schaeffer, J.
M.; Blake, A. D. Somatostatin receptor subtype 5 regulates insulin
secretion and glucose homeostasis. Mol. Endocrinol. 2003, 17, 93–
106.
(8) Tirone, T. A.; Norman, M. A.; Moldovan, S.; DeMayo, F. .J;
Wang, X P; Brunicardi, F. C. Pancreatic somatostatin inhibits insulin
secretion via SSTRꢀ5 in the isolated perfused mouse pancreas model.
Pancreas. 2003, 26, e67–e73.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Sprecher, U.; Mohr, P.; Martin, R. E.; Maerki, H. P.; Sanchez,
R. A.; Binggeli, A.; Kuennecke, B.; Christ, A. D. Novel, nonꢀpeptidic
somatostatin receptor subtype 5 antagonists improve glucose tolerꢀ
ance in rodents. Regul. Pept. 2010, 159, 19–27.
ASSOCIATED CONTENT
Supporting Information
(10) Yamasaki, T.; Hirose, H.; Yamashita, T.; Takakura, N.;
Morimoto, S.; Nakahata, T.; Kina, A.; Nakano, Y.; Tamura, Y. O.;
Sugama, J.; Odani, T.; Shimizu, Y.; Iwasaki, S.; Watanabe, M.;
Maekawa, T. Discovery of novel somatostatin receptor subtype 5
(SSTR5) antagonists: Pharmacological studies and design to improve
pharmacokinetic profiles and human Etherꢀaꢀgoꢀgoꢀrelated gene
(hERG) inhibition. Bioorg. Med. Chem. 2017, 25, 4153–4162.
(11) Hirose, H.; Yamasaki, T.; Ogino, M.; Mizojiri, R.; Tamuraꢀ
Okano, Y.; Yashiro, H.; Muraki, Y.; Nakano, Y.; Sugama, J.; Hata,
A.; Iwasaki, S.; Watanabe, M.; Maekawa, T.; Kasai, S. Discovery of
novel 5ꢀoxaꢀ2,6ꢀdiazoaspiro[3.4]octꢀ6ꢀene derivatives as potent, seꢀ
lective, and orally available somatostatin receptor subtype 5 (SSTR5)
antagonists for the treatment of type 2 diabetes mellitus. Bioorg. Med.
Chem. 2017, 25, 4175–4193.
Supporting information is available free of charge on the ACS Publicaꢀ
Experimental procedures for the preparation of compounds 2ꢀ10. SAR
table of additional representative analogs. In vitro and in vivo assay protoꢀ
cols. SSTR5 WT/KO OGTT study results (PDF).
AUTHOR INFORMATION
Corresponding Author
*(U.S.) Phone: 908ꢀ740ꢀ3782. Eꢀmail: weiguo_liu@merck.com
Author Contributions
The manuscript was written through contributions of all authors. All
authors have given approval to the final version of the manuscript.
(
12) Farb, T. B.; Adeva, M.; Beauchamp, T. J.; Cabrera, O.;
Coates, D. A.; Meredith, T. D.; Droz, B. A.; Efanov, A.; Ficorilli, J.
V.; Gackenheimer, S. L.; MartinezꢀGrau, M. A.; Molero, V.; Ruano,
G.; Statnick, M. A.; Suter, T. M.; Bokvist, K. B.; Barrett, D. G. Reguꢀ
lation of endogenous (male) rodent GLPꢀ1 secretion and human islet
insulin secretion by antagonism of somatostatin receptor 5. Endocri-
nology 2017, 158, 3859ꢀ3873.
(13) Maruthur, N. M.; Tseng, E.; Hutfless, S.; Wilson, L. M; Suaꢀ
rezꢀCuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J. .B; Bolen, S.;
Diabetes medications as monotherapy or metforminꢀbased combinaꢀ
tion therapy for type 2 diabetes: A systematic review and metaꢀ
analysis. Ann. Intern. Med. 2016, 164, 740–751.
Funding
All authors were employees of Merck & Co., Inc., Kenilworth, NJ, USA
during the time this research was conducted. All research was funded by
Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, USA.
ABBREVIATIONS
SSTR5, somatostatin receptor subtype 5; SST, somatostatin; GLPꢀ1, gluꢀ
cagonꢀlike peptide 1; GI, gastrointestinal; KO, genetic knockout; GDIS,
glucoseꢀdependent insulin secretion; WT, genetic wildꢀtype; HFD, high
fat diet; OGTT, oral glucose tolerance test; T2DM, type 2 diabetes melliꢀ
tus; AUC, area under the curve; DPPꢀ4, dipeptidyl peptidase 4; SGLT2,
sodiumꢀglucose coꢀtransporter 2; PK, pharmacokinetic; mpk, milligram
per kilogram; SAR, structure activity relationshipl; CHO, Chinese hamster
ovary.
(14) Martin, R. E.; Green, L. G.; Guba, W.; Kratochwil, N.; Christ,
A. Discovery of the first nonpeptidic, smallꢀmolecule, highly selecꢀ
tive somatostatin receptor subtype 5 antagonists: A chemogenomics
approach. J. Med. Chem. 2007, 50, 6291–6294.
(
15) Martin, R. E.; Mohr, P.; Maerki, H. P.; Guba, W.; Kuratli, C.;
REFERENCES
Gavelle, O.; Binggeli, A.; Bendels, S.; AlvarexꢀSanchez, R.; Alker,
A.; Polonchuk, L.; Christ, A. D. Benzoxazole piperidines as selective
and potent somatostatin receptor subtype 5 antagonists. Bioorg. Med.
Chem. Lett. 2009, 19, 6106ꢀ6113.
(16) Alker, A.; Binggeli, A.; Christ, A. D.; Green, L.; Maerki, H.
P.; Martin, R. E.; Mohr, P. Piperidinylꢀnicotinamides as potent and
selective somatostatin receptor subtype 5 antagonists. Bioorg. Med.
Chem. Lett. 2010, 20, 4521–4525.
(17) Aster, S. D.; Duffy, J. L.; Liang, G.ꢀB.; Shao, P.; Ye, F. Subꢀ
stituted spirocyclic aminesuseful as antidiabetic compounds. WO
2010/129729, November 11, 2010.
(18) Tan, C. P.; Feng, Y.; Zhou, Y.ꢀP.; Eiermannm G. J.; Petrov,
A.; Zhou, C.; Lin, S.; Salituro, G.; Meinke, P.; Mosley, R.; Akiyama,
T. E.; Einstein, M.; Kumar, S.; Berger, J. P.; Mills, S. G.; Thornberry,
N. A.; Yang, L.; Howard, A. D. Selective smallꢀmolecule agonists of
G protein–coupled receptor 40 promote glucoseꢀdependent insulin
secretion and reduce blood glucose in mice. Diabetes 2008, 57, 2211–
2219.
(1) Selmer, I.ꢀS.; Schindler, M.; Allan, J. P.; Humphrey, P. P. A.;
Emson P. C. Advances in understanding neuronal somatostatin recepꢀ
tors. Regul. Pept. 2000, 90, 1–18.
(2) Patel, Y. C.; Greenwood, M. T.; Warszynska, A.; Panetta, R.;
Srikant, C. B. All five cloned human somatostatin receptors
(hSSTR1–5) are functionally coupled to adenyl cyclase. Biochem.
Biophys. Res. Commun. 1994, 198, 605–612.
(3) Reisine, T.; Bell, G. I. Molecular biology of somatostatin reꢀ
ceptors. Endocrinol. Rev. 1995, 16, 427–442.
(4) Chisholm, C.; Greenberg, G. R. Somatostatinꢀ28 regulates
GLPꢀ1 secretion via somatostatin receptor subtype 5 in rat intestinal
cultures. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E311–E317.
(5) Ludvigsen, E.; Olsson, R.; Stridsberg, M.; Janson, E. T.;
Sandler, S. Expression and distribution of somatostatin receptor subꢀ
5
ACS Paragon Plus Environment