10.1002/asia.201701504
Chemistry - An Asian Journal
COMMUNICATION
0.026 mmol), Cu(OTf)2 (8.6 mg, 0.024 mmol) and 3Å MS (30 mg) were
added into the dry Schlenk tube. The flask was evacuated via vacuum
and refilled with O2 three times, then DMAc (2 mL) was added using a
syringe. The resulting mixture was stirred for 30-40 minutes. Then, 4H-
Chromenes 1 (0.3 mmol, 1.5 equiv) and aryl boronic acid 2 (0.2 mmol,
1.0 equiv) were added. The resulting mixture was stirred for another 18 h
to 24 h at 40 °C. After the reaction was completed, the reaction mixture
was diluted with EtOAc (2 mL) and H2O (5 mL). The aqueous phase was
extracted with EtOAc (3×5 mL). The organic phase was dried with
anhydrous Na2SO4 and then filtered through a 0.5 inch plug of silica gel
(eluting with EtOAc) to remove the solid. The crude reaction mixture was
concentrated under reduced pressure. The resulting crude product was
purified by flash column silica gel chromatography (eluting with petroleum
ether/ethyl acetate 100/1) to provide product 3.
16
17
18
H (1a)
H (1a)
H (1a)
p-CF3-C6H4 (2l)
p-CN-C6H4 (2m)
p-Ac-C6H4 (2n)
21 (3p)
37 (3q)
45 (3r)
93
91
92
[a] Molar ratio of 1/2/Pd(CH3CN)2Cl2/L1/Cu(OTf)2 = 150:100:6:13:12. [b]
Isolated yield. [c] Determined by chiral HPLC.
In conclusion, we have realized
a palladium-catalyzed
asymmetric redox-relay Heck reaction of 4H-chromenes and
arylboronic acids in moderate to good yields with good to high
enantioselectivities. The resulting products contain core
structure of many natural products and bio-active compound.
The usefulness of the method is demonstrated by the product
3m reported to be converted into BW683C.[6] Further studies of
extension of the method and applications in organic synthesis
are in progress.
Acknowledgements
Financial support by National Natural Science Foundation of
China (NSFC) (21372242, 21472214, 21532010, 21421091), the
Strategic Priority Research Program of the Chinese Academy of
Sciences (XDB20030100), the NSFC and the Research Grants
Council of Hong Kong Joint Research Scheme (21361162001),
the Technology Commission of Shanghai Municipality, and the
Croucher Foundation of Hong Kong is acknowledged.
Experimental Section
General procedure for the palladium-catalyzed asymmetric redox-
relay Heck reaction of 4H-chromenes 1 and arylboronic acids 2:
A 10 mL dry Schlenk tube equipped with a stir bar was flame dried and
flushed with argon. Pd(CH3CN)2Cl2 (3.1 mg, 0.012 mmol), L1 (7.1 mg,
Oestreich, Angew. Chem. Int. Ed. 2014, 53, 2282; Angew. Chem. 2014,
126, 2314.
[9]
a) W. J. Drury, N. Zimmermann, M. Keenan, M. Hayashi, S. Kaiser, R.
Goddard, A. Pfaltz, Angew. Chem., Int. Ed. 2004, 43, 70; Angew. Chem.
2004, 116, 72; b) K. S. Yoo, C. P. Park, C. H. Yoon, S. Sakaguchi, J.
O'Neill, K. W. Jung, Org. Lett. 2007, 9, 3933; c) S. Sakaguchi, K. S.
Yoo, J. O'Neill, J. H. Lee, T. Stewart, K. W. Jung, Angew. Chem., Int.
Ed. 2008, 47, 9326; Angew. Chem. 2008, 120, 9466; d) S. T. Henriksen,
P.-O. Norrby, P. Kaukoranta, P. G. Andersson, J. Am. Chem. Soc.
2008, 130, 10414; e) M. O. Fitzpatrick, H. Muller-Bunz, P. J. Guiry, Eur.
J. Org. Chem. 2009, 2009, 1889; f) J. Mazuela, O. Pàmies, M. Diéguez,
Chem. Eur. J. 2010, 16, 3434; g) Y. Zhang, J. R. Zhou, J. Am. Chem.
Soc. 2012, 134, 11833; h) J. Hu, H. R. Hirao, Y. X. Li, J. R. Zhou,
Angew. Chem. Int. Ed. 2013, 52, 8676; Angew. Chem. 2013, 125, 8838;
i) S. J. Liu, J. R. Zhou, Chem. Commun. 2013, 49, 11758; j) C. L. Wu, J.
R. Zhou, J. Am. Chem. Soc. 2014, 136, 650; k) K.-Y. Lo, L. Ye, D. Yang,
Synlett 2017, 28, 1570.
Keywords: palladium • redox-relay Heck reaction • asymmetric
catalysis • 4H-chromene • boronic acid
[1]
a) S. Cheenpracha, C. Karalai, C. Ponglimanont, A. Kanjana-Opas J.
Nat. Prod. 2009, 72, 1395; b) F. GoÂmez-Garibay, J. S. CalderoÂn, M.
De La O Arciniega, C. L. CeÂspedes, O. TeÂllez-ValdeÂs, J. Taboada,
Phytochemistry 1999, 52, 1159; c) D. J. Bauer, J. W. T. Selway, J. F.
Batchelor, M. Tisdale, I. C. Caldwell, D. A. Young, Nature, 1981, 292,
369; d) F. Gomez, L. Quijano, J. S. Calderon, C. Rodriguez, R. Tirso,
Phytochemistry 1985, 24, 1057.
[2]
a) J. P. A. Harrity, M. S. Visser, J. D. Gleason, A. H. Hoveyda, J. Am.
Chem. Soc. 1997, 119, 1488; b) P. Wipf, W. S. Weiner, J. Org. Chem.
1999, 64, 5321; c) C. Hardouin, L. Burgaud, A. Valleix, E. Doris
Tetrahedron Lett. 2003, 44, 435; d) Y.-L. Shi, M. Shi, Org. Biomol.
Chem. 2007, 5, 1499; e) H. C. Shen, Tetrahedron 2009, 65, 3931; f) H.
Zhang, S. Lin, E. N. Jacobsen J. Am. Chem. Soc. 2014, 136, 16485; g)
N. Majumdar, N. D. Paul, S. Mandal, B. de Bruin, W. D. Wulff ACS
Catal. 2015, 5, 2329; h) R. K. Orr, L.-C. Campeau, H. R. Chobanian, J.
M. M. Dunn, B. Pio, C. W. Plummer, A. Nolting, R. T. Ruck, Synthesis
2017, 49, 657.
[10] a) E. W. Werner, T. S. Mei, A. J. Burckle, M. S. Sigman, Science 2012,
338, 1455; b) T. S. Mei, E. W. Werner, A. J. Burckle, M. S. Sigman, J.
Am. Chem. Soc. 2013, 135, 6830; c) C. C. Oliveira, R. A. Angnes, C. R.
D. Correia, J. Org. Chem. 2013, 78, 4373; d) Y. Dang, S. Qu, Z.-X.
Wang, X. Wang, J. Am. Chem. Soc. 2014, 136, 986; e) L. Xu, M. J.
Hilton, X. Zhang, P.-O. Norrby, Y.-D. Wu, M. S. Sigman, O. Wiest, J.
Am. Chem. Soc. 2014, 136, 1960; f) T. S. Mei, H. H. Patel, M. S.
Sigman, Nature 2014, 508, 340; g) H. H. Patel, M. S. Sigman, J. Am.
Chem. Soc. 2015, 137, 3462; h) C. Zhang, C. B. Santiago, L. Kou, M. S.
Sigman, J. Am. Chem. Soc. 2015, 137, 7290; i) C. Zhang, C. B.
Santiago, J. M. Crawford, M. S. Sigman, J. Am. Chem. Soc. 2015, 137,
15668; j) Z.-M. Chen, M. J. Hilton, M. S. Sigman J. Am. Chem. Soc.
2016, 138, 11461; k) H. H. Patel, M. S. Sigman, J. Am. Chem. Soc.
2016, 138, 14226; l) N. J. Race, C. S. Schwalm, T. Nakamuro, M. S.
Sigman, J. Am. Chem. Soc. 2016, 138, 15881; m) C. Zhang, B.
Tutkowski, R. J. DeLuca, L. A. Joyce, O. Wiest, M. S. Sigman Chem.
Sci. 2017, 8, 2277; n) Z.-M. Chen, C. S. Nervig, R. J. DeLuca, M. S.
Sigman, Angew. Chem. Int. Ed. 2017, 56, 6651; Angew. Chem. 2017,
129, 6751.
[3]
[4]
P. N. Moquist, T. Kodama, S. E. Schaus, Angew. Chem., Int. Ed. 2010,
49, 7096; Angew. Chem. 2010, 122, 7250.
M. Rueping, U. Uria, M. Y. Lin, I. Atodiresei, J. Am. Chem. Soc. 2011,
133, 3732.
[5]
[6]
B.-S. Zeng, X. Yu, P. W. Siu, K. A. Scheidt, Chem. Sci. 2014, 5, 2277.
H. He, K. Y. Ye, Q. F. Wu, L. X. Dai, S. L. You, Adv. Synth. Catal. 2012,
354, 1084.
[7]
a) T. Tu, W. P. Deng, X. L. Hou, L. X. Dai, X. C. Dong, Chem. Eur. J.
2003, 9, 3073; b) X. L. Hou, D. X. Dong, K. Yuan, Tetrahedron:
Asymmetry 2004, 15, 2189; c) W.-Q. Wu, Q. Peng, D.-X. Dong, X.-L.
Hou, Y.-D. Wu, J. Am. Chem. Soc. 2008, 130, 9717; d) C.-H. Ding, X.-L.
Hou, Bull. Chem. Soc. Jpn. 2010, 83, 992; d) H. Li, C.-H. Ding, B. Xu,
X.-L. Hou, Acta Chim. Sinica 2014, 72, 765; e) H. Li, S.-L. Wan, C.-H.
Ding, B. Xu, X.-L. Hou, RSC Adv. 2015, 5, 75411; f) H. Li, A. Gao, X.-Y.
Liu, C.-H. Ding, B. Xu, X.-L. Hou, Synthesis 2017, 49, 159.
a) L. F. Tietze, H. Ila, H. P. Bell, Chem. Rev. 2004, 104, 3453; b) M.
Shibasaki, E. M. Vogl, T. Ohshima, Adv. Synth. Catal. 2004, 346, 1533;
c) D. McCartney, P. J. Guiry, Chem. Soc. Rev. 2011, 40, 5122; d) M.
[11] a) O. Loiseleur, P. Meier, A. Pfaltz, Angew. Chem. Int. Ed. 1996, 35,
200; Angew. Chem. 1996, 108, 218; b) J. Hu, Y. P. Lu, Y. X. Li, J. R.
Zhou, Chem. Commun. 2013, 49, 9425.
[8]
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.