B. Li et al. / Journal of Molecular Catalysis A: Chemical 345 (2011) 81–89
89
that the stability of Pt/CMK-3 catalyst was higher than the commer-
cial Pt/Al2O3 and Pt/C catalysts and Pt/CMK-3 catalyst also afforded
comparable ethyl pyruvate conversion with Pt/Al2O3 catalyst.
2083
Acknowledgements
2050
This work was supported by the NSFC (20703018) and Shanghai
Leading Academic Discipline Project (B409). The authors thank Mr.
Zhen Liu for his help in Raman spectrum measurements.
2060
a
References
[1] T. Burgi, A. Baiker, Acc. Chem. Res. 37 (2004) 909.
[2] M. Studer, H.U. Blaser, C. Exner, Adv. Synth. Catal. 345 (2003) 45.
[3] M. Bartok, Curr. Org. Chem. 10 (2006) 1533.
[4] M. Studer, S. Burkhardt, H.U. Blaser, Chem. Commun. (1999) 1727.
[5] A. Baiker, Catal. Today 100 (2005) 159.
b
[6] D.Y. Murzin, P. Maki-Arvela, E. Toukoniitty, T. Salmi, Catal. Rev.: Sci. Eng. 47
(2005) 175.
[7] G.J. Hutchings, Annu. Rev. Mater. Res. 35 (2005) 143.
[8] T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107 (2007) 4863.
[9] Y. Orito, S. Imai, S. Niwa, Preprints of the 43rd Catalysis Forum (Japan, 1978),
1978, p. 130.
[10] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. 8 (1979) 1118.
[11] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. 1 (1982) 137.
[12] B. Torok, K. Felfoldi, G. Szakonyi, K. Balazsik, M. Bartok, Catal. Lett. 52 (1998)
81.
c
d
[13] B. Torok, K. Balazsik, M. Torok, Gy. Szollosi, M. Bartok, Ultrason. Sonochem. 7
(2000) 151.
[14] M. Bartok, K. Balazsik, G. Szollosi, T. Bartok, J. Catal. 205 (2002) 168.
[15] S.P. Griffiths, P. Johnston, P.B. Wells, Appl. Catal. A: Gen. 191 (2000) 193.
[16] B. Torok, G. Szollosi, K. Balazsik, K. Felfoldi, I. Kun, M. Bartok, Ultrason.
Sonochem. 6 (1999) 97.
2080
2000
Wavenumber (cm-1)
[17] M.Y. Kim, S.B. Jung, M.G. Kim, Y.S. You, J.H. Park, C.H. Shin, G. Seo, Catal. Lett.
129 (2009) 194.
[18] S. Basu, M. Mapa, C.S. Gopinath, M. Doble, S. Bhaduri, G.K. Lahiri, J. Catal. 239
(2006) 154.
Fig. 9. DRIFT spectra of CO adsorbed on (a) Pt/Al2O3 catalyst, CO saturated; (b)
Pt/CMK-3-W catalyst, CO saturated; (c) Pt/Al2O3 catalyst, He purged; (d) Pt/CMK-3-
W catalyst, He purged.
[19] U. Bohmer, F. Franke, K. Morgenschweis, T. Beiber, W. Reschitilowski, Catal.
Today 60 (2000) 167.
[20] X. Li, Y. Shen, R. Xing, Y. Liu, H. Wu, M. He, P. Wu, Catal. Lett. 122 (2008) 325.
[21] X. Li, Ph.D Thesis, School of Graduate Students, Chinese Academy of Sciences,
(2004).
[22] Y. Orito, S. Imai, S. Niwa, G.H. Nguyen, J. Synth. Org. Chem. Jpn. 37 (1979) 173.
[23] M. Fraga, M. Mendes, E. Jordao, J. Mol. Catal. A: Chem. 179 (2002) 243.
[24] A. Perosa, P. Tundo, M. Selva, J. Mol. Catal. A: Chem. 180 (2002) 169.
[25] J.T. Wehrli, A. Baiker, D.M. Monti, H.U. Blaser, H.P. Jalett, J. Mol. Catal. 57 (1989)
245.
[26] L. Xing, F. Du, J. Liang, Y. Chen, Q. Zhou, J. Mol. Catal. A: Chem. 276 (2007) 191.
[27] G. Szollosi, Z. Nemeth, K. Hernadi, M. Bartok, Catal. Lett. 132 (2009) 370.
[28] G. Farkas, L. Hegedus, A. Tungler, T. Mathe, J. Figueiredo, M. Freitas, J. Mol. Catal.
A: Chem. 153 (2000) 215.
[29] E. Sipos, G. Fogassy, A. Tungler, P. Samant, J. Figueiredo, J. Mol. Catal. A: Chem.
212 (2004) 245.
[30] T. Tarnai, A. Tungler, T. Mathe, J. Petro, R.A. Sheldon, G. Toth, J. Mol. Catal. A:
Chem. 102 (1995) 41.
[31] E. Sipos, A. Tungler, I. Bitter, React. Kinet. Catal. Lett. 79 (2003) 101.
[32] R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 13 (2001) 677.
[33] R. Ryoo, S.H. Joo, Stud. Surf. Sci. Catal. 148 (2004) 241.
[34] J. Lee, S. Han, T. Hyeon, J. Mater. Chem. 14 (2004) 478.
[35] T. Ohkubo, J. Miyawaki, K. Kaneko, R. Ryoo, N.A. Seaton, J. Phys. Chem. B 106
(2002) 6523.
may be weakened due to the repulsive interaction of Pt/CMK-3
surface with a high electron density. Furthermore, Pt/CMK-3 cat-
alysts with ordered mesoporous structure also had high specific
surface area, adequate pore volume and small Pt particle size with
high dispersion, which enables easy mass transport, hence compa-
rable conversion in the chiral hydrogenation of ethyl pyruvate can
be achieved on CD-modified Pt/CMK-3 catalysts. Additionally, the
weak interaction of CO with Pt/CMK-3 catalyst can also deduce that
CD was also weakly adsorbed on the catalyst surface because the
high electron density from the disordered graphene of Pt/CMK-3
surface maybe hinders the adsorption of quinoline moiety of CD
through the interaction. Therefore, lower ee values were fur-
nished by CD-modified Pt/CMK-3 catalysts. Nevertheless, the high
electron density of CMK-3 support can also result in the strong
donating interaction to stabilize the Pt nanoparticles, as a result,
only trace amount of Pt atoms were leached into the solution and
the Pt/CMK-3-W catalyst showed good reusability.
[36] L. Li, Z.H. Zhu, G.Q. Lu, Z.F. Yan, S.Z. Qiao, Carbon 45 (2007) 11.
[37] D. Su, J. Delgado, X. Liu, D. Wang, R. Schlogl, L. Wang, Z. Zhang, Z. Shan, F. Xiao,
Chem. Asian J. 4 (2009) 1108.
4. Conclusion
[38] J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Chem. Commun. (1999) 2177.
[39] M. Kang, S.H. Yi, H.I. Lee, J.E. Yie, J.M. Kim, Chem. Commun. (2002) 1944.
[40] M. Choi, R. Ryoo, Nat. Mater. 2 (2003) 473.
[41] S. Jun, S. Joo, R. Ryoo, M. Kruk, J. Am. Chem. Soc. 122 (2000) 10712.
[42] R. Xing, Y. Liu, Y. Wang, L. Chen, H. Wu, Y. Jiang, M. He, P. Wu, Micropor. Mesopor.
Mater. 105 (2007) 41.
[43] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10
(2010) 751.
[44] Z. Ma, F. Zaera, J. Phys. Chem. B 109 (2005) 406.
[45] M. Arx, T. Burgi, T. Mallat, A. Baiker, Chem. Eur. J. 8 (2002) 1430.
[46] M. Minder, T. Mallat, P. Skrabal, A. Baiker, Catal. Lett. 29 (1994) 115.
[47] D. Ferri, T. Burgi, K. Borszeky, T. Mallat, J. Catal. 193 (2000) 139.
[48] D. Radivojevic, K. Seshan, L. Lefferts, Appl. Catal. A: Gen. 301 (2006) 51.
[49] E. Schmidt, A. Vargas, T. Mallat, A. Baiker, J. Am. Chem. Soc. 131 (2009) 12358.
[50] M.R. Attwood, C.H. Hassall, A. Krohn, G. Lawton, S. Redshaw, J. Chem. Soc. Perkin
Trans. I (1986) 1011.
5 wt.% Pt/CMK-3 catalysts were prepared via a facile impreg-
nation method using H2PtCl6 dissolved in different media as
Pt precursors. After chirally modified with cinchona alkaloids,
Pt/CMK-3 catalysts proved to be active and enantioselective for the
enantioselective hydrogenation of ␣-ketoesters under mild con-
ditions. The initial activity of higher than 23,000 h−1 TOF and up
to 82% ee were obtained with CD-modified Pt/CMK-3 catalysts for
the chiral hydrogenation of ethyl pyruvate. With regard to the
asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate, the
highest TOF of 5615 h−1and 64% ee were afforded. To the best of
our knowledge, the results achieved in this study with Pt/CMK-3
catalyst are the best ones among those obtained with Pt catalysts
supported on carbon materials, including activated carbon, carbon
nanotubes and ordered mesoporous carbons. Of particular note is
[51] X. Li, X. You, P. Ying, J. Xiao, C. Li, Top. Catal. 25 (2003) 63.
[52] V.M. Bermudez, J. Phys. Chem. C 113 (2009) 1917.