Communication
[4]
Borylation of alkyl halides: (i) by Pd and Ni catalysis: a) A. Joshi-Pangu,
X. Ma, M. Diane, S. Iqbal, R. J. Kribs, R. Huang, C.-Y. Wang, M. R. Biscoe, J.
Org. Chem. 2012, 77, 6629–6633; b) A. S. Dudnik, G. C. Fu, J. Am. Chem.
Soc. 2012, 134, 10693–10697; c) J. Yi, J.-H. Liu, J. Liang, J.-J. Dai, C.-T.
Yang, Y. Fu, L. Liu, Adv. Synth. Catal. 2012, 354, 1685–1691; (ii) with Zn;
d) S. K. Bose, K. Fucke, L. Liu, P. G. Steel, T. B. Marder, Angew. Chem. Int.
Ed. 2014, 53, 1799–1803; Angew. Chem. 2014, 126, 1829; (iii) with Fe; e)
R. B. Bedford, P. B. Brenner, E. Carter, T. Gallagher, D. M. Murphy, D. R.
Pye, Organometallics 2014, 33, 5940–5943; f) T. C. Atack, R. M. Lecker,
S. P. Cook, J. Am. Chem. Soc. 2014, 136, 9521–9523.
Cu catalysis: a) H. Iwamoto, K. Kubota, E. Yamamoto, H. Ito, Chem. Com-
mun. 2015, 51, 9655–9658; b) J. H. Kim, Y. K. Chung, RSC Adv. 2014, 4,
39755–39758; c) K. Kubota, E. Yamamoto, H. Ito, J. Am. Chem. Soc. 2013,
135, 2635–2640; d) C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang,
J.-H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder, L. Liu, Angew. Chem.
Int. Ed. 2012, 51, 528–532; Angew. Chem. 2012, 124, 543; e) H. Ito, K.
Kubota, Org. Lett. 2012, 14, 890–893; f) aryl halides: C. Kleeberg, L. Dang,
Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2009, 48, 5350–5354; Angew.
Chem. 2009, 121, 5454; Cu-catalyzed sp3-based cross couplings have also
recently been reported: C.-T. Yang, Z.-Q. Zhang, Y.-C. Liu, L. Liu, Angew.
Chem. Int. Ed. 2011, 50, 3904–3907; Angew. Chem. 2011, 123, 3990.
For overviews on cyclic sulfamidate synthesis and reactivity, see: a) R. E.
Meléndez, W. D. Lubell, Tetrahedron 2003, 59, 2581–2616; b) J. F. Bower,
J. Rujirawanich, T. Gallagher, Org. Biomol. Chem. 2010, 8, 1505–1519.
The use of cyclic (and acyclic) sulfamidates as aryl pseudohalides (i.e.,
by activation of an O–aryl bond) in Ni-mediated cross-coupling reactions
has been successfully demonstrated; cyclic sulfamidates: a) K. W. Quas-
dorf, M. Riener, K. V. Petrova, N. K. Garg, J. Am. Chem. Soc. 2009, 131,
17748–17749; acyclic sulfamidates: b) P. M. Wehn, J. Du Bois, Org. Lett.
2005, 7, 4685–4688.
dures to synthesize stereochemically defined alkylboronic
esters. Cyclic sulfamidates are readily available and offer access
to enantiomerically (or diastereomerically) pure (aminoalkyl)-
boronic esters suitable for further exploitation in cross-coupling
processes. While our initial premise was that cyclic sulfamidates
would perform as pseudohalides (cf., tosylates) and undergo
borylation under well-established conditions, that proved not
to be the case. There are substrate-specific features, such as the
intermediacy of an N-sulfated iodide that clearly imbue cyclic
sulfamidates with major advantages over the corresponding
(i.e., simple amino-based) alkyl halides. Another important as-
pect is the key requirement of an N-acylated cyclic sulfamidate;
N-alkyl/benzyl or N-sulfonyl analogues are not efficient sub-
strates in our hands. Further studies are required to probe the
role of the N-acyl moiety, but this may, like the N-sulfate, serve
to activate the reacting C–O bond and/or provide a ligand for
any intermediate copper species. The involvement of radical
intermediates in this chemistry can lead to loss of stereo-
chemistry at the reacting C–O center, but the outcome is sub-
strate-dependent and can provide good overall levels of stereo-
control.
[5]
[6]
[7]
CCDC 1433121 (for 2a) contains the supplementary crystallographic
[8]
Achiral (aminoalkyl)boronic esters and related derivatives have been re-
ported by metal-catalyzed borylation by Fu,[4b] Marder,[4d,5d] Chung[5b]
and Cook;[4f] for other synthetic approaches, including examples of
amino acid derived variants, see: a) D. N. Butler, A. H. Soloway, J. Am.
Chem. Soc. 1964, 86, 2961; b) D. N. Butler, A. H. Soloway, J. Am. Chem.
Soc. 1966, 88, 484–487; c) A. Dicko, M. Montury, M. Baboulene, Synth.
Commun. 1988, 18, 459–463; d) I. Georgiou, A. Whiting, Eur. J. Org. Chem.
2012, 4110–4113; e) J. E. Harvey, M. N. Kenworthy, R. J. K. Taylor, Tetrahe-
dron Lett. 2004, 45, 2467–2471; f) C. P. Decicco, D. J. Nelson, Y. Luo, L.
Shen, K. Y. Horiuchi, K. M. Amsler, L. A. Foster, S. M. Spitz, J. J. Merrill,
C. F. Sizemore, K. C. Rogers, R. A. Copeland, M. R. Harpel, Bioorg. Med.
Chem. Lett. 2001, 11, 2561–2564; g) V. Denniel, P. Bauchat, D. Danion, R.
Danion-Bougot, Tetrahedron Lett. 1996, 37, 5111–5114.
Acknowledgments
We thank Dr. M. Haddow for X-ray crystallographic analysis of 2a.
N. U. thanks the Bristol Chemical Synthesis Centre for Doctoral
Training for a studentship funded by EPSRC (EP/G036764/1).
Keywords: Cyclic sulfamidates · Boron · Copper · Radical
reactions · (Aminoalkyl)boronic esters
[9]
By using 1a, Pd-catalyzed borylation was extensively screened. Despite
evaluating a wide range of catalyst/ligand combinations and reaction
conditions, we were able to obtain 2a (from 1a) but in (at best) 28 %
yield. This result was achieved by using Biscoe's conditions:[4a] Pd2dba3
(0.5 mol-%), tBu2MePHBF4 (3 mol-%), K3PO4·H2O (2 equiv.), B2pin2
(1.2 equiv.), H2O (15 equiv.), tBuOH, 60 °C, 18 h.
X-ray crystallography also served to confirm the structure of 2a; see
Supporting Information.
Cu-catalyzed borylation of 1a also works with Bu4NBr, but the yield of
2a dropped to 29 %. All optimization details (Cu, halide sources, solvents
etc.) are available in the Supporting Information.
Cyclic sulfamidate 1t (and other N-substituted analogues) is sensitive to
base-mediated elimination and are therefore useful to employ[6b] as test
substrates to help to define the limits of a methodology under study.
Preliminary efforts to suppress the formation of reduction products such
as 5 and 6 centered on the choice of solvent, and DMF proved to be
the most effective; see Supporting Information.
Molecular ion peak for N-sulfate intermediate 9 was observed by nega-
tive-ion ESI-MS. A change in the C=O stretching frequency of the Boc
group was also seen by IR spectroscopy. Bu4NI did not affect the conver-
sion of iodide 9 into boronic ester 2k.
[1] a) R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492;
b) Boronic Acids: Preparation and Applications in Organic Synthesis Medi-
cine and Materials (Ed.: D. G. Hall), 2nd ed., Wiley-VCH, Weinheim, 2011.
[2] For representative examples to generate C(sp3)–C bonds, see: a) B. W.
Glasspoole, M. S. Oderinde, B. D. Moore, A. Antoft-Finch, C. M. Crudden,
Synthesis 2013, 45, 1759–1763; b) G. A. Molander, S. R. Wisniewski, J. Am.
Chem. Soc. 2012, 134, 16856–16868; c) T. Awano, T. Ohmura, M. Sugi-
nome, J. Am. Chem. Soc. 2011, 133, 20738–20741; d) T. Ohmura, T.
Awano, M. Suginome, J. Am. Chem. Soc. 2010, 132, 13191–13193; e)
J. C. H. Lee, R. McDonald, D. G. Hall, Nature Chem. 2011, 3, 894–899; f)
D. Imao, B. W. Glasspoole, V. S. Laberge, C. M. Crudden, J. Am. Chem. Soc.
2009, 131, 5024–5025; g) N. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hart-
wig, J. Org. Chem. 2002, 67, 5553–5566; h) J. H. Kirchhoff, M. R. Nether-
ton, I. D. Hills, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 13662–13663; i) S. R.
Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. Int. Ed. 2001, 40,
4544–4568; Angew. Chem. 2001, 113, 4676; j) J. P. Hildebrand, S. P. Mars-
den, Synlett 1996, 893–894; k) X. Z. Wang, M. Z. Deng, J. Chem. Soc.
Perkin Trans. 1 1996, 2663–2664.
[10]
[11]
[12]
[13]
[14]
[3] For representative examples to generate C(sp3)–N/O bonds, see: a) R.
Larouche-Gauthier, T. G. Elford, V. K. Aggarwal, J. Am. Chem. Soc. 2011,
133, 16794–16797; b) J. L. Stymiest, G. Dutheuil, A. Mahmood, V. K. Ag-
garwal, Angew. Chem. Int. Ed. 2007, 46, 7491–7494; Angew. Chem. 2007,
119, 7635; c) E. Fernandez, K. Maeda, M. W. Hooper, J. M. Brown, Chem.
Eur. J. 2000, 6, 1840–1846.
The mechanism of Cu-catalyzed borylation has been studied by
Marder,[5d,5f] Chung[5b] and Ito,[5e] and various options have been recog-
nised. Chung observed ring opening of cyclopropylmethyl bromide [to
give the corresponding (3-butenyl)boronate]. Marder has reported that
borylation of 6-bromohex-1-ene leads to cyclopentylmethyl boronate
(via a cyclopentylmethyl radical?), but attempts to scavenge a radical
[15]
Eur. J. Org. Chem. 2016, 673–678
676
© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim