partly hydrolysed sample of 2 containing approx. one third of B12
(1) showed indeed an 30% increase in cell growth compared to
unhydrolyzed 2 as shown in Fig. S6.† This behaviour is in good
agreementwith thebiologicalactivityof the individualcompounds
1 and 2.
7 J. Stubbe, D. G. Nocera, C. S. Yee and M. C. Y. Chang, Chem. Rev.,
2003, 103, 2167–2201.
8 K. M. Larsson, D. T. Logan and P. Nordlund, ACS Chem. Biol., 2010,
5, 933–942.
9 J. H. Matthews, Blood, 1997, 89, 4600–4607.
10 G. R. McLean, P. M. Pathare, D. S. Wilbur, A. C. Morgan, C. S.
Woodhouse, J. W. Schrader and H. J. Ziltener, Cancer Res., 1997, 57,
4015–4022.
Interestingly, when Zn2+ ions (1, 5, 10, 20 or 75 mg l-1) were
added as ZnSO4·7H2O at the beginning or 24 h after the start of
bacterial growth with 2 (250 pg ml-1), the biological activity of
the modified B12-derivative was not altered (Fig. S7†). This gives
evidence that 2 is not affected by zinc(II) mediated hydrolysis, most
likely due to protection by bacterial cellular uptake.
Competition experiments with B12 (250 pg ml-1) and increasing
amounts of 3 (0.1–10 000 eq) showed that at least an 100-fold
excess of 3 is necessary to obtain partial inhibition (Fig. S8†).
Co-crystal structures of B12 with the Cbl dependant RNRs of
Lactobacillus delbrueckii and Thermotoga maritima have been
reported.8,37 Superposition of the cofactor which is bound in the
active site of the latter structure with 2 suggests no steric strain
(Fig. S9†).29 We assume therefore that the reduced biological
activity of 2 is not caused by difficulties in Ado-Cbl dependant
RNR. Reasons may include a disturbed metabolism to the
organometallic cofactor (i) as well as lowered binding to other
participating proteins (ii).
In summary, modification at the 5¢-OH position of B12 with
quinoline did not alter intramolecular coordination and the
electronic properties at the metal centre. These properties are
desirable for the development of B12-bioconjugates as cell-delivery
agents. Bacterial uptake in L. delbrueckii was demonstrated with a
B12-quinoline derivative containing a metal-cleavable linker. The
strongly reduced biological activity in cell growth can therefore
be assigned to the structural modification at the 5¢-OH moiety.
This information is important for the developments of modified
B12-derivatives for biological and medical applications.
Support by R. Alberto and the Institute of Inorganic Chemistry
of the University of Zurich is acknowledged. The authors are
thankful to L. Bigler for recording of the HR-ESI-MS spectra
and to DSM Nutritional Products AG (Basel/Switzerland) for a
generous gift of vitamin B12.
11 S. M. Clardy, D. G. Allis, T. J. Fairchild and R. P. Doyle, Expert Opin.
Drug Delivery, 2011, 8, 127–140.
12 S. Kunze, F. Zobi, P. Kurz, B. Spingler and R. Alberto, Angew. Chem.,
Int. Ed., 2004, 43, 5025–5029.
13 J. Wuerges, G. Garau, S. Geremia, S. N. Fedosov, T. E. Petersen and L.
Randaccio, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 4386–4391.
14 P. Siega, J. Wuerges, F. Arena, E. Gianolio, S. N. Fedosov, R. Dreos,
S. Geremia, S. Aime and L. Randaccio, Chem.–Eur. J., 2009, 15, 7980–
7989.
15 L. Hannibal, C. A. Smith, D. W. Jacobsen and N. E. Brasch, Angew.
Chem., Int. Ed., 2007, 46, 5140–5143.
16 A. K. Petrus, D. G. Allis, R. P. Smith, T. J. Fairchild and R. P. Doyle,
ChemMedChem, 2009, 4, 421–426.
17 R. P. Doyle, N. Viola-Villegas, A. E. Rabideau, M. Bartholoma and J.
Zubieta, J. Med. Chem., 2009, 52, 5253–5261.
18 D. A. Collins and H. P. C. Hogenkamp, J. Nucl. Med., 1997, 38, 717–
723.
19 D. R. van Staveren, S. Mundwiler, U. Hoffmanns, J. K. Pak, B. Spingler,
N. Metzler-Nolte and R. Alberto, Org. Biomol. Chem., 2004, 2, 2593–
2603.
20 M. Lee and C. B. Grissom, Org. Lett., 2009, 11, 2499–2502.
21 R. Mukherjee, E. G. Donnay, M. A. Radomski, C. Miller, D. A.
Redfern, A. Gericke, D. S. Damron and N. E. Brasch, Chem. Commun.,
2008, 3783–3785.
22 P. Ruiz-Sanchez, S. Mundwiler, B. Spingler, N. R. Buan, J. C. Escalante-
Semerena and R. Alberto, J. Biol. Inorg. Chem., 2007, 13, 335–347.
23 R. A. Horton, J. D. Bagnato and C. B. Grissom, J. Org. Chem., 2003,
68, 7108–7111.
24 S. Gschosser, K. Gruber, C. Kratky, C. Eichmuller and B. Kra¨utler,
Angew. Chem., Int. Ed., 2005, 44, 2284–2288.
25 S. Gschosser and B. Kra¨utler, Chem.–Eur. J., 2008, 14, 3605–3619.
26 E. J. Corey and R. L. Dawson, J. Am. Chem. Soc., 1962, 84, 4899–4904.
27 F. H. Zelder, J. Brunner and R. Kra¨mer, Chem. Commun., 2004, 902–
903.
28 R. B. Hannak, S. Gschosser, K. Wurst and B. Kra¨utler, Monatsh.
Chem., 2007, 138, 899–907.
29 Supporting information.
30 P. Butler, M. O. Ebert, A. Lyskowski, K. Gruber, C. Kratky and B.
Kra¨utler, Angew. Chem., Int. Ed., 2006, 45, 989–993.
31 X. Wang, L. Wei and L. P. Kotra, Bioorg. Med. Chem., 2007, 15, 1780–
1787.
32 Crystal data for 2: C79H125CoN15O28.5P, M = 1830.84 g mol-1, or-
˚
˚
thorhombic, a = 15.75386(17) A, b = 22.5570(3) A, c = 25.5975(3)
Notes and references
3
˚
˚
A, V = 9096.32(19) A , T = 183(2)K, space group P212121, Z = 4, 39047
reflections measured, 18584 independent reflections (Rint = 0.0335). R1 =
0.0492 for I > 2s(I) or 0.0707 for all data, wR(F2) = 0.1085 for I >
2s(I) or 0.1135 for all data. Flack parameter = -0.001(11).
33 B. Kra¨utler, R. Konrat, E. Stupperich, G. Faerber, K. Gruber and C.
Kratky, Inorg. Chem., 1994, 33, 4128–4139.
1 B. Kra¨utler, D. Arigoni and B. Golding, Vitamin B12 and B12-Proteins,
Wiley-VCH, Weinheim, 1998.
2 K. L. Brown, Chem. Rev., 2005, 105, 2075–2149.
3 E. Nexo, in Vitamin B12 and B12-Proteins, ed. B. Kra¨utler, D. Arigoni
and B. Golding, Wiley-VCH, Weinheim, 1998, p. 461.
4 R. Banerjee, C. Gherasim and D. Padovani, Curr. Opin. Chem. Biol.,
2009, 13, 484–491.
5 A. K. Petrus, T. J. Fairchild and R. P. Doyle, Angew. Chem., Int. Ed.,
2009, 48, 1022–1028.
6 R. Banerjee and S. Chowdhury, in Chemistry and Biochemistry of B12,
ed. R. Banerjee, Wiley-Interscience, New York, 1st edn, 1999, pp. 707–
730.
34 N. Marino, A. E. Rabideau and R. P. Doyle, Inorg. Chem., 2011, 50,
220–230.
35 K. Zhou and F. Zelder, Angew. Chem., Int. Ed., 2010, 49, 5178–5180.
36 R. W. Hay and C. R. Clark, J. Chem. Soc., Dalton Trans., 1977, 1866–
1874.
37 M. D. Sintchak, G. Arjara, B. A. Kellogg, J. Stubbe and C. L. Drennan,
Nat. Struct. Biol., 2002, 9, 293–300.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 9665–9667 | 9667
©