We have previously reported that the oligo(9,9′-spirobifluorene)
24TSF by partial ortho-linkage exhibits a higher triplet energy
(ET ) 2.55 eV) than its para-linked isomer (ET ) 2.28 eV),
and 24TSF can be utilized as full-hydrocarbon host material
for green and red electrophosphorescence.6 In this letter, we
report the elegant synthesis of new tri-, tetra- and pentamers of
9,9′-spirobifluorenes by full ortho-linkage. The molecular design
impedes the π conjugation of fluorene units, and guarantees
their high triplet energies (ET ) 2.80 eV). We also report their
unique photophysical properties as well as their application as
host materials for blue phosphorescent OLEDs.
with 1 equiv of n-BuLi by a lithium-halogen exchange
reaction, then reacted with carbon dioxide followed an
dehydration in concentrated sulfuric acid to afford 4-bromo-
9-H-fluoren-9-one (3).7,8 Afterward, 3 was treated with 1
equiv of (2′-bromobiphenyl-2-yl) lithium (2), followed by
an intramolecular ring-closure reaction to afford the desired
4 in a good isolated yield of 87%. The fully ortho-linked
trimer (6) was synthesized by Suzuki coupling reaction of 4
with 2 equiv of 9,9′-spirobifluorene-4-yl pinacol boronic ester
(5)6a with an isolated yield of 56% (Scheme 1).
To build up the fully ortho-linked tetramer (10), a single
ortho-brominated dimer, 4-(4′-bromo-9,9′-spirobifluorene-4-yl)-
9,9′-spirobifluorene (8) is needed. As shown in Scheme 2, there
To obtain the fully ortho-linked oligo(9,9′-spirobifluo-
rene)s, 4,4′-dibromo-9,9′-spirobifluorene (4) is a key inter-
mediate, which cannot be synthesized from the direct
Scheme 2. Synthesis of the Single ortho-Brominated Dimer 8
Scheme 1. Synthesis of the Key Intermediate
4,4′-Dibromo-9,9′-spirobifluorene 4 and the Fully ortho-Linked
Trimer 6
bromination of 9,9′-spirobifluorene due to the regioselectiv-
ity. An alternative synthetic route is adopted as shown in
Scheme 1. 2,2′-Dibromobiphenyl (1) was initially treated
are two synthetic routes for 8. Though only one step reaction
in route A, the yield was low (ca. 20%) due to the formation
of the trimer 6. In route B, 4-(9,9′-spirobifluorene-4-yl)-9-H-
fluoren-9-one (7) was first obtained by combination of 3 and 5
through Suzuki coupling reaction, and then the dimer 8 can be
achieved from 7 according to the same strategy mentioned
above, with an excellent yield of 91%. Subsequently, 8 was
conveniently converted to its pinacol boronic ester 9. Accord-
ingly, the tetramer 10 can be synthesized by the combination
(4) (a) Wu, R.; Schumn, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem.
1996, 61, 6906. (b) Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. AdV. Mater.
2000, 12, 828. (c) Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.;
Lin, Y. T.; Chiang, H. H.; Hsieh, P. Y.; Wu, C. C.; Chou, C. H.; Su, Y. O.;
Lee, G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 124, 11576. (d) Chien,
Y. Y.; Wong, K. T.; Chou, P. T.; Cheng, Y. M. Chem. Commun. 2002,
2874. (e) Pei, J.; Ni, J.; Zhou, X. H.; Cao, X. Y.; Lai, Y. H. J. Org. Chem.
2002, 67, 4924. (f) Mu¨ller, C. D.; Falcou, A.; Reckefuss, N.; Rojehn, M.;
Eiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholtz,
K. Nature 2003, 421, 829. (g) Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen,
R. T.; Chien, Y. Y. AdV. Mater. 2004, 16, 61. (h) Su, H. J.; Wu, F. I.; Shu,
C. F. Macromolecules 2004, 37, 7197. (i) Wu, Y.; Li, J.; Fu, Y.; Bo, Z.
Org. Lett. 2004, 6, 3485. (j) Cao, X. Y.; Zhang, W.; Zi, H.; Pei, J. Org.
Lett. 2004, 6, 4845. (k) Wong, K. T.; Chen, R. T.; Fang, F. C.; Wu, C. C.;
Lin, Y. T. Org. Lett. 2005, 7, 1979. (l) Lyu, Y. Y.; Kwak, J.; Jeon, W. S.;
Byun, Y.; Lee, H. S.; Kim, D.; Lee, C.; Char, K. AdV. Func. Mater. 2009,
19, 420.
(5) (a) Wong, K. T.; Liao, Y. L.; Lin, Y. T.; Su, H. C.; Wu, C. C. Org.
Lett. 2005, 7, 5131. (b) Chao, T. C.; Lin, Y. T.; Yang, C. Y.; Hung, T. S.;
Chou, H. C.; Wu, C. C.; Wong, K. T. AdV. Mater. 2005, 17, 992.
(6) (a) Jiang, Z.; Yao, H.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qin,
J.; Ma, D. Org. Lett. 2009, 11, 2607. (b) Leung, M. K.; Yang, C. C.; Lee,
J. H.; Tsai, H. H.; Lin, C. F.; Huang, C. Y.; Su, Y. O.; Chiu, C. F. Org.
Lett. 2007, 9, 235.
(7) Miller, H. F.; Bachman, G. B. J. Am. Chem. Soc. 1935, 57, 2443.
(8) Dougherty, T. K.; Lau, K. S. Y. J. Org. Chem. 1983, 48, 5273.
Org. Lett., Vol. 12, No. 24, 2010
5649