0.0 kcal/mol (for 2), 10.6 kcal/mol (for 5), 14.0 kcal/mol (for 4), and 22.1 kcal/mol (for 3). From these calculations it follows
that trans isomer 5 is 3.4 kcal/mol more stable than cis isomer 4. For comparison, the energy difference of the analogous
unfluorinated trans and cis isomers is only 0.2 kcal/mol.
CONCLUSIONS
The crystal and molecular structure of perfluorinated 9,10-diphenylanthracene and four isomeric 9,10-
diphenyldihydroanthracenes is studied. Isomer 3 was investigated only as a cocrystal with isomer 2 (2:1). It is shown that in
the studied compounds the angles between the planes of the phenyl rings and the anthracene core are close to 90°. According
to the DFT/B3LYP/6-31G(d) calculations, isomer 2 containing the naphthalene moiety is the most stable among studied
isomers 2-5. In the 1-5 crystals there are C–F…π interactions and no π-stacking interactions.
The work was supported by RFBR (Project 16-03-00348).
REFERENCES
1. M. L. Tang and Z. Bao. Chem. Mater., 2011, 23, 446-455.
2. F. Babudri, G. M. Farinola, F. Naso, and R. Ragni. Chem. Commun., 2007, 1003-1022.
3. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, and S. Tokito. J. Am. Chem. Soc., 2004,
126(26), 8138-8140.
4. K. Ohkubo, Y. Sakamoto, T. Suzuki, T. Tsuzuki, D. Kumaki, and S. Tokito. Chem. Eur. J., 2008, 14, 4472-4474.
5. S. B. Heidenhain, Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, T. Mori, S. Tokito, and Y. Taga. J. Am. Chem. Soc.,
2000, 122(41), 10240-10241.
6. Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, S. Tokito, and Y. Taga. J. Am. Chem. Soc., 2000, 122(8), 1832/1833.
7. C.-L. Wu, C.-H. Chang, Y.-T. Chang, C.-T. Chen, C.-T. Chen, and C.-J. Su. J. Mater. Chem. C, 2014, 2, 7188-7200.
8. V. Gray, D. Dzebo, A. Lundin, J. Alborzpour, M. Abrahamsson, B. Albinsson, and K. Moth-Poulsen. J. Mater. Chem.
C, 2015, 3, 11111-11121.
9. H. Dong, X. Fu, J. Liu, Z. Wang, and W. Hu. Adv. Mater., 2013, 25, 6158.
10. A. K. Tripathi, M. Heinrich, T. Siegrist, and J. Pflaum. Adv. Mater., 2007, 19, 2097.
11. K. Reichenbacher, H. I. Suss, and J. Hulliger. Chem. Soc. Rev., 2005, 34, 22-30.
12. Cambridge Structural Database. WebCSD v.1.1.2, March 2017 update. Universty of Cambridge, UK.
13. T. V. Mezhenkova, V. R. Sinyakov, V. M. Karpov, Ya. V. Zonov, Yu. V. Gatilov, and V. E. Platonov. Russ. J. Organ.
Chem., 2018, 54, (in press).
14. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al. J. Comput. Chem., 1993, 14, 1347-1363.
15. J. F. Tannaci, M. Noji, J. McBee, and T. D. Tilley. J. Org. Chem., 2007, 72, 5567.
16. T. Salzillo, R. G. Della Valle, E. Venuti, A. Brillante, T. Siegrist, M. Masino, F. Mezzadri, and A. Girlando. J. Phys.
Chem. C., 2016, 120, 1831.
17. Y. Imai, K. Kamon, K. Kawaguchi, N. Tajima, T. Sato, R. Kuroda, and Y. Matsubara. Lett. Org. Chem., 2009, 6, 588.
18. T. V. Rybalova and I. Yu. Bagryanskaya. J. Struct. Chem., 2009, 50(4), 741-753.
19. R. Banerjee, R. Mondal, J. A. K. Howard, and G. R. Desiraju. Cryst. Growth Des., 2006, 6, 999.
20. M. M. Khusniyarov, K. Harms, and J. Sundermeyer. J. Fluorine Chem., 2006, 127, 200.
21. L. R. Nassimbeni and Hong Su. J. Chem. Crystallogr., 2011, 41, 1528.
22. L. J. Barbour, M. R. Caira, T. le Roex, and L. R. Nassimbeni. J. Chem. Soc., Perkin Trans. 2, 2002, 1973.
454