Inorganic Chemistry p. 10371 - 10378 (2011)
Update date:2022-08-17
Topics:
Morfin, Jean-Francois
Toth, Eva
Gallium complexes are gaining increasing importance in biomedical imaging thanks to the practical advantages of the 68Ga isotope in Positron Emission Tomography (PET) applications. 68Ga has a short half-time (t1/2 = 68 min); thus the 68Ga complexes have to be prepared in a limited time frame. The acceleration of the formation reaction of gallium complexes with macrocyclic ligands for application in PET imaging represents a significant coordination chemistry challenge. Here we report a detailed kinetic study of the formation reaction of the highly stable Ga(NOTA) from the weak citrate complex (H3NOTA = 1,4,7-triazacyclononane-1,4, 7- triacetic acid). The transmetalation has been studied using 71Ga NMR over a large pH range (pH = 2.01-6.00). The formation of Ga(NOTA) is a two-step process. First, a monoprotonated intermediate containing coordinated citrate, GaHNOTA(citrate), forms in a rapid equilibrium step. The rate-determining step of the reaction is the deprotonation and slow rearrangement of the intermediate accompanied by the citrate release. The observed reaction rate shows an unusual pH dependency with a minimum at pH 5.17. In contrast to the typical formation reactions of poly(amino carboxylate) complexes, the Ga(NOTA) formation from the weak citrate complex becomes considerably faster with increasing proton concentration below pH 5.17. We explain this unexpected tendency by the role of protons in the decomposition of the GaHNOTA(citrate)* intermediate which proceeds via the protonation of the coordinated citrate ion and its subsequent decoordination to yield the final product Ga(NOTA). The stability constant of this intermediate, log K GaHNOTA(citrate) = 15.6, is remarkably high compared to the corresponding values reported for the formation of macrocyclic lanthanide(III)-poly(amino carboxylates). These kinetic data do not only give mechanistic insight into the formation reaction of Ga(NOTA), but might also contribute to establish optimal experimental conditions for the rapid preparation of Ga(NOTA)-based radiopharmaceuticals for PET applications.
View MoreContact:0571-86821378 ,86820258,56836287,56830923,
Address:Block D ,20F, Tianyuan Building,No.508, Wensan RD, 310013,Hangzhou Zhejiang China
Hubei Xinghuo Chemical Co., Ltd.,
Contact:13925817279 13907299441
Address:Xinghuo Fine Chemistry Industrial Park, Xiaochang County, Hubei Province, China
Baoding City Light Industry And Textiles Imp.& Exp. Corp. Chemical Department.
Contact:86-312-3262436
Address:NO.658 CHAOYANG SOUTH STREET,BAODING CITY HEBEI CHINA
Contact:+86-574-87065746
Address:10th Floor, No.787 Baizhang East Road,
Contact:+86-28-88523492
Address:714rooms of Time Square, Pujiang County
Doi:10.1002/ejic.201402471
(2014)Doi:10.3762/bjoc.15.53
(2019)Doi:10.1016/S0040-4039(03)00736-6
(2003)Doi:10.1016/j.catcom.2011.02.025
(2011)Doi:10.1016/S0040-4039(00)90313-7
(1966)Doi:10.1002/anie.202016113
(2021)