Chemistry - A European Journal
10.1002/chem.201905558
COMMUNICATION
were synthesized to give further insight as to the resulting
spectroscopic properties.
with fluorescence quantum yields of 0.41 and 0.47 respectively
for 2a and 2w.
In conclusion, we have developed an efficient method for the
formation of N-N bonds from readily available primary heteroaryl
amines at room temperature. The reaction is assumed to involve
an amide anion. This anion, in the presence of hypervalent iodine
(III), affords various nitrogen-rich triazapentalene derivatives.
Some of these new compounds exhibit promising fluorescence
properties.
Table 2. Spectroscopic characterization of the tricyclic compounds 2a-x in
DCM
Compds
nm]
abs
[
[nm]
em
[b]
[nm]
max[d]
φ
F
[e]
a]
[c]
[
2
a
415
415
434
424
410
416
412
411
413
364
382
371
353
396
364
360
360
495
516
518
529
512
507
489
536
507
428
476
452
421
470
434
439
410
80
101
84
12000
6700
0.41
0.13
2b
2c
13200
8900
0.23
Acknowledgements
2
p
q
105
102
92
0.096
0.084
0.29
The Direction Générale de l’Armement is gratefully acknowledged
for financial support. This work has also been partially supported
by Labex SynOrg (ANR-11-LABX-0029), Labex IRON (ANR-11-
LABX-0018-01), the University of Orleans and the Centre Val de
Loire Region. The ANR 18- CE07-0009-01 is acknowledged for
the financial support of the spectroscopic part of the study.
2
7100
2
r
12100
9100
2w
77
0.47
2
x
y
127
95
13600
13800
8600
0.013
0.21
2
Keywords: hypervalent compounds - heteroaromatic amines -
2d
63
0.021
0.13
iodine - triazapentalene derivatives - N-N bond formation
2e
93
12000
3900
Notes and references
2
f
81
0.28
1]
a) H. Gyorgy, R. Zsuzsanna, Curr. Org. Chem. 2009, 13, 791-809; b) G.
Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-
2g
68
12900
7900
0.008
0.23
7395; c) P. F. Kuijpers, J. I. van der Vlugt, S. Schneider, B. de Bruin,
2
i
74
Chem. – Eur. J. 2017, 23, 13819-13829; d) C. Wentrup, Angew. Chem.
Int. Ed. 2018, 57, 11508-11521; e) T. Shimbayashi, K. Sasakura, A.
Eguchi, K. Okamoto, K. Ohe, Chem. – Eur. J. 2019, 25, 3156-3180.
a) P. A. S. Smith, B. B. Brown, J. Am. Chem. Soc. 1951, 73, 2435-2437;
b) P. A. S. Smith, J. H. Hall, J. Am. Chem. Soc. 1962, 84, 480-485; c) S.
Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005,
2s
70
7900
0.011
0.004
0.002
2
t
79
10200
13200
[
2]
2u
50
44, 5188-5240; d) D. Intrieri, P. Zardi, A. Caselli, E. Gallo, Chem.
2j
410
507
97
4300
0.19
Commun. 2014, 50, 11440-11453.
[
[
3]
4]
P. A. S. Smith, J. M. Clegg, J. H. Hall, J. Org. Chem. 1958, 23, 524-529.
a) R. A. Abramovitch, T. D. Bailey, T. Takaya, V. Uma, J. Org. Chem.
2
m
395
396
394
436
438
444
41
42
49
22400
18300
15800
0.037
0.093
0.028
1
974, 39, 340-345; b) Y. Yamada, T. Yamamoto, O. Makoto, Chem. Lett.
975, 4, 361-362.
1
2
n
o
[
5]
a) R. H. Dodd, P. Dauban, Synlett 2003, 1571-1586; b) S. Fantauzzi, A.
Caselli, E. Gallo, Dalton Trans. 2009, 5434–5443; c) J. W. W. Chang, T.
M. U. Ton, P. W. H. Chan, Chem Rec 2011, 11, 331-357; d) B. Darses,
R. Rodrigues, L. Neuville, M. Mazurais, P. Dauban, Chem. Commun.
2017, 53, 493-508.
2
[
a] Apparent maxima of absorption bands. [b] Apparent maxima of emission
bands. [c] Stokes Shift values calculated as the difference between the
maxima of absorption and emission bands. [d] Units: L.mol .cm . [e] is the
F
fluorescence quantum yield determined using Coumarin 153 (φ =0.38 in
-
1
-1
[
6]
a) J. A. Halfen, Curr. Org. Chem. 2005, 9, 657-669; b) D. N. Zalatan, J.
D. Bois, 2009, 292, 347-378; c) F. Collet, R. H. Dodd, P. Dauban, Chem.
Commun. 2009, 5061-5074; d) Y. Park, Y. Kim, S. Chang, Chem. Rev.
EtOH) as a reference standard.
2
017, 117, 9247-9301; e) J. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed.
018, 57, 62-101.
The analysis of their fluorescent properties (see [SI] for details)
Table 2) underlines that the nature of the six membered rings
2
(
[
[
[
7]
8]
9]
R. T. Gephart, T. H. Warren, Organometallics 2012, 31, 7728-7752.
A. R. Thornton, S. B. Blakey, J. Am. Chem. Soc. 2008, 130, 5020-5021.
S. Manna, P. O. Serebrennikova, I. A. Utepova, A. P. Antonchick, O. N.
Chupakhin, Org. Lett. 2015, 17, 4588-4591.
barely affects the excitation and emission wavelengths. The
pyridazino-triazapentalene 2j exhibits excitation and emission
wavelengths in the same range as the pyrazino-triazapentalene
series (compounds 2a-c, 2p-r, 2w-y) with a large Stokes shift.
The pyridino- (2m-o) and pyrimidine-triazapentalenes (2d-g, 2i,
[10] L. Maestre, R. Dorel, O. Pablo, I. Escofet, W. M. Sameera, E. Alvarez, F.
Maseras, M. M. Diaz-Requejo, A. M. Echavarren, P. J. Perez, J. Am.
Chem. Soc. 2017, 139, 2216-2223.
2s-u) show an hypsochromic shift and a lower Stokes shift. The
[
[
[
11] Y. Monguchi, K. Hattori, T. Maegawa, K. Hirota, H. Sajiki, Heterocycles
009, 79, 669-680.
12] O. Prakash, H. K. Gujral, N. Rani, S. P. Singh, Synth. Commun. 2000,
0, 417-425.
nature of the substituents both on the azole and the azine parts
have no impact on the excitation and emission wavelengths but a
strong influence on the molar absorption coefficient and the
quantum yields. Moderate performance was observed for 2c, 2y
2
3
13] M. L. T. Ananthakrishnan Gunasekaran, J. H. Boyer, Heteroat. Chem.
1994, 5, 441-445.
and 2r. Overall, the CF
3
function lowers the molar absorption
coefficient. The best results were obtained in the pyrazine series
[14] a) D. Balachari, M. L. Trudell, Tetrahedron Lett. 1997, 38, 8607-8610; b)
K. Namba, A. Osawa, S. Ishizaka, N. Kitamura, K. Tanino, J. Am. Chem.
4
This article is protected by copyright. All rights reserved.