Organic Letters
Letter
Skelton, B. W.; Heath, C. H. Org. Biomol. Chem. 2010, 8, 3563.
(c) Lundquist, J. T.; Harnish, D. C.; Kim, C. Y.; Mehlmann, J. F.;
Unwalla, R. J.; Phipps, K. M.; Crawley, M. L.; Commons, T.; Green, D.
M.; Xu, W.-X.; Hum, W. T.; Eta, J. E.; Feingold, I.; Patel, V.; Evans, M. J.;
Lai, K.-D.; Marcucci, L. B.; Mahaney, P. E.; Wrobel, J. E. J. Med. Chem.
2010, 53, 1774. (d) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed.
2006, 45, 1105.
(6) For selected examples of the synthesis of carbolines, see: (a) Wang,
L.; Xie, X.; Liu, Y. Angew. Chem., Int. Ed. 2013, 52, 13302. (b) Zhang, D.-
H.; Tang, X.-Y.; Wei, Y.; Shi, M. Chem. - Eur. J. 2013, 19, 13668. (c) Patil,
N. T.; Shinde, V. S.; Sridhar, B. Angew. Chem., Int. Ed. 2013, 52, 2251.
zwitterionic intermediate C to give the formal C−H function-
alization products.
In conclusion, a synthesis of tetrahydrocarboline, azepino[4,5-
b]indoles, tetrahydropyrrolopyridine, and tetrahydropyrrolo-
[2,3-d]azepine by rhodium(II)-catalyzed intramolecular annula-
tions of indolyl- and pyrrolyl-tethered N-sulfonyl-1,2,3-triazoles
was achieved. During the studies, it was further found that by
tuning electronic and structural factors polycyclic spiroindolines
could also be synthesized by [3 + 2] cycloaddition reactions. This
method features divergent intramolecular reactions of tethered
triazole substrates, allowing for facile synthesis of a variety of
nitrogen-containing heterocycles.
(d) Stockigt, J.; Antonchick, A. P.; Wu, F.; Waldmann, H. Angew. Chem.,
̈
Int. Ed. 2011, 50, 8538. (e) Zhang, Y.-Q.; Zhu, D.-Y.; Jiao, Z.-W.; Li, B.-
S.; Zhang, F.-M.; Tu, Y.-Q.; Bi, Z. Org. Lett. 2011, 13, 3458. (f) You, S.-
L.; Cai, Q.; Zeng, M. Chem. Soc. Rev. 2009, 38, 2190.
ASSOCIATED CONTENT
* Supporting Information
■
(7) Selected reviews: (a) Davies, H. M. L.; Morton, D. Chem. Soc. Rev.
2011, 40, 1857. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003,
103, 2861. (c) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev.
2010, 110, 704. (d) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire,
A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
(8) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.;
Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (b) Chuprakov, S.;
Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 4757.
(9) For reviews, see: (a) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev.
2014, 43, 5151. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.
2013, 52, 1371. (c) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2012, 51, 862.
(10) For recent examples, see: (a) Lindsay, V. N. G.; Viart, H. M.-F.;
Sarpong, R. J. Am. Chem. Soc. 2015, 137, 8368. (b) Miura, T.; Nakamuro,
T.; Liang, C.-J.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 15905.
(c) Chen, K.; Zhu, Z.-Z.; Zhang, Y.-S.; Tang, X.-Y.; Shi, M. Angew.
Chem., Int. Ed. 2014, 53, 6645. (d) Alford, J. S.; Davies, H. M. L. J. Am.
Chem. Soc. 2014, 136, 10266. (e) Yang, J.-M.; Zhu, C.-Z.; Tang, X.-Y.;
Shi, M. Angew. Chem., Int. Ed. 2014, 53, 5142. (f) Shang, H.; Wang, Y.;
Tian, Y.; Feng, J.; Tang, Y. Angew. Chem., Int. Ed. 2014, 53, 5662.
(g) Schultz, E. E.; Lindsay, V. N. G.; Sarpong, R. Angew. Chem., Int. Ed.
2014, 53, 9904. (h) Chuprakov, S.; Worrell, B. T.; Selander, N.; Sit, R.
K.; Fokin, V. V. J. Am. Chem. Soc. 2014, 136, 195. (i) Parr, B. T.; Davies,
H. M. L. Angew. Chem., Int. Ed. 2013, 52, 10044. (j) Miura, T.; Tanaka,
T.; Biyajima, T.; Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52,
3883. (k) Alford, J. S.; Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 11712.
(11) For recent examples, see: (a) Kwok, S. W.; Zhang, L.; Grimster, N.
P.; Fokin, V. V. Angew. Chem., Int. Ed. 2014, 53, 3452. (b) Lee, D. J.; Han,
H. S.; Shin, J.; Yoo, E. J. J. Am. Chem. Soc. 2014, 136, 11606. (c) Miura,
T.; Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272.
(d) Ma, X.; Pan, S.; Wang, H.; Chen, W. Org. Lett. 2014, 16, 4554.
(e) Xing, Y.; Sheng, G.; Wang, J.; Lu, P.; Wang, Y. Org. Lett. 2014, 16,
1244. (f) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52,
1507. (g) Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 4716. (h) Chuprakov, S.; Kwok, S. W.; Fokin, V. V. J. Am.
Chem. Soc. 2013, 135, 4652. (i) Miura, T.; Tanaka, T.; Hiraga, K.;
Stewart, S. G.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 13652. (j) Shi,
Y.; Gevorgyan, V. Org. Lett. 2013, 15, 5394. (k) Schultz, E. E.; Sarpong,
R. J. Am. Chem. Soc. 2013, 135, 4696.
S
TThe Supporting Information is available free of charge on the
Experimental procedures, characterization data, NMR
spectra, and X-ray crystallographic data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NIH (Project No.
2R01GM099142-05). We wish to thank Dr. John Bacsa from
the Emory University X-ray Crystallography Center for the X-ray
crystallographic structure determination.
REFERENCES
■
(1) (a) Liu, Y.-P.; Zhao, Y.-L.; Feng, T.; Cheng, G.-G.; Zhang, B.-H.; Li,
Y.; Cai, X.-H.; Luo, X.-D. J. Nat. Prod. 2013, 76, 2322. (b) Galliford, C.
V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748. (c) O’Connor, S.
E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532. (d) Jadulco, R.; Edrada, R.
A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. J.
Nat. Prod. 2004, 67, 78.
(2) (a) Lim, K.-H.; Kam, T.-S. Org. Lett. 2006, 8, 1733. (b) Kobayashi,
J. I.; Sekiguchi, M.; Shimamoto, S.; Shigemori, H.; Ishiyama, H.; Ohsaki,
A. J. Org. Chem. 2002, 67, 6449. (c) Cox, E. D.; Cook, J. M. Chem. Rev.
1995, 95, 1797.
(3) (a) Feng, T.; Li, Y.; Cai, X.-H.; Gong, X.; Liu, Y.-P.; Zhang, R.-T.;
Zhang, X.-Y.; Tan, Q.-G.; Luo, X.-D. J. Nat. Prod. 2009, 72, 1836.
(b) Ma, J.; Yin, W.; Zhou, H.; Cook, J. M. Org. Lett. 2007, 9, 3491.
(c) Kawasaki, T.; Higuchi, K. Nat. Prod. Rep. 2005, 22, 761. (d) Shen, Y.-
C.; Chen, C.-Y.; Hsieh, P.-W.; Duh, C.-Y.; Lin, Y.-M.; Ko, C.-L. Chem.
Pharm. Bull. 2005, 53, 32.
(4) For selected examples of the synthesis of spiroindolines, see:
(a) Iwata, A.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. Chem. Commun.
2014, 50, 298. (b) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 6802. (c) Zhu, J.; Liang, Y.; Wang, Li; Zheng, Z.-B.; Houk, K.
N.; Tang, Y. J. Am. Chem. Soc. 2014, 136, 6900. (d) Fan, F.; Xie, W.; Ma,
D. Chem. Commun. 2012, 48, 7571. (e) Cera, G.; Crispino, P.; Monari,
M.; Bandini, M. Chem. Commun. 2011, 47, 7803. (f) Wu, Q.-F.; He, H.;
Liu, W.-B.; You, S.-L. J. Am. Chem. Soc. 2010, 132, 11418.
(12) Zhang, Y.-S.; Tang, X.-Y.; Shi, M. Org. Chem. Front. 2015, 2, 1516.
(13) For more detailed attempts to improve the enantioselectivity of
(14) The structure for compound 4j was unambiguously assigned by
X-ray crystallography. The crystal structure has been deposited at the
Cambridge Crystallographic Data Centre, and the deposition number
CCDC 1427192 has been allocated.
(15) Wu, J.; Becerril, J.; Lian, Y.; Davies, H. M. L; Porco, J. A.; Panek, J.
S. Angew. Chem., Int. Ed. 2011, 50, 5938.
(5) For selected examples of the synthesis of azepinoindoles, see:
(a) Zhong, X.; Li, Y.; Zhang, J.; Zhang, W.-X.; Wang, S.-X.; Han, F.-S.
Chem. Commun. 2014, 50, 11181. (b) Stewart, S. G.; Ghisalberti, E. L.;
D
Org. Lett. XXXX, XXX, XXX−XXX