10.1002/asia.201801671
Chemistry - An Asian Journal
FULL PAPER
Hz), –159.33 (s), –160.07 (s), –160.27 (d, J = 25.9 Hz), –160.70 (d, J =
64.1 Hz), –160.99 (s); HRMS (FAB+): m/z = 1371.1481 (found), 1371.1482
(Calcd for C64H33F20N6Pd), error –0.1 ppm.
Keywords: Triplet Photosensitizer
calix[6]phyrin • Singlet oxygen • Photostability
•
Palladium N-confused
Data for 2-Pd-H2: yield = 75 % (16.1 mg); 1H NMR (CDCl3, ppm): d 10.26
(s, 1H), 6.65 (d, J = 4.6 Hz, 1H), 6.50 (d, J = 4.6 Hz, 1H), 6.41 (d, J = 4.6
Hz, 1H), 6.36 (d, J = 4.5 Hz, 1H), 5.93 (s, 1H), 3.38 (s, 1H), 2.88 (s, 1H),
2.27 (s, 1H), 2.21 (s, 1H), 1.83 (s, 1H), 1.62 (m, 5H); 19F NMR (CDCl3,
ppm): d -136.69 (s), -137.28 (s), -138.57 (d, J = 23.9 Hz), -138.94 (s), -
151.13 (s), –152.32 (d, J = 38.7 Hz), –159.82 (s), –160.29 (s), –160.58 (s),
–160.90 (s); HRMS (FAB+): m/z = 1371.1484 (found), 1371.1482 (Calcd
for C64H33F20N6Pd), error + 0.1 ppm.
[1]
a) J. J. Liang, C. L. Gu, M. L. Kacher, C. S. Foote, J. Am. Chem. Soc.
1983, 105, 4717–4721; b) J. L. Ravanat, P. Di Mascio, G. R. Martinez,
M. H. Medeiros, J. Cadet, J. Biol. Chem. 2000, 275, 40601–40604; c) M.
C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233–234, 351–
371; d) P. R. Ogilby, Chem. Soc. Rev. 2010, 39, 3181–3209.
C. Schweitzer, R. Schmidt, Chem. Rev. 2003, 103, 1685–1758.
a) D. E. J. G. J. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer
2003, 3, 380–387; b) C. A. Robertson, D. H. Evans, H. Abrahamse, J.
Photochem. Photobiol. B 2009, 96, 1–8; (c) M. C. Issa, M. Manela-Azulay,
An. Bras. Dermatol. 2010, 85, 501–511.
[2]
[3]
General method for synthesis of bis-palladium complexes (1-Pd-Pd): A
mixture of free ligand 1 (20 mg, 0.015 mmol) and Pd(OAc)2 (11.4 mg, 0.052
mmol) in CH2Cl2/MeOH (2:1) was stirred under argon for 12 h under reflux
conditions (40 °C). The solvents were removed in vacuo using high
vacuum pump. The crude product was purified using silica gel column
chromatography with CH2Cl2/hexane mixture.
Data for 1-Pd-Pd: yield = 60% (14 mg); 1H NMR (CDCl3, ppm): d 6.59 (d,
J = 4.5 Hz, 1H), 6.55 (d, J = 4.7 Hz, 1H), 6.48 (d, J = 4.6 Hz, 1H), 6.41 (d,
J = 4.4 Hz, 1H), 5.90 (s, 1H), 3.26 (s, 1H), 3.06 (s, 1H), 2.26 (m, 2H), 1.83
(m, 2H), 1.58 (m, 4H); 19F NMR (CDCl3, ppm): d –137.37 (s), –138.72 (d,
J = 21.9 Hz), –139.13 (d, J = 24.7 Hz), –151.67 (d, J = 57.9 Hz), –159.73
(s), –160.08 (s), –160.61 (s), –160.93 (s); HRMS (FAB+): m/z = 1474.0290
(found), 1474.0282 (Calcd for C64H30F20N6Pd2), error + 0.5 ppm.
Data for 2-Pd-Pd: yield = 71% (16.5 mg); 1H NMR (CDCl3, ppm): d 6.64 (d,
J = 4.7 Hz, 1H), 6.48 (t, J = 5.2 Hz, 2H), 6.38 (d, J = 4.4 Hz, 1H), 5.93 (s,
1H), 3.21 (s, 1H), 3.09 (s, 1H), 2.25 (m, 2H), 1.80 (s, 2H), 1.55 (m, 4H);
19F NMR (CDCl3, ppm): d –137.35 (d, J = 23.6 Hz), –138.71 ~ –139.28 (m),
–151.65 (d, J = 37.5 Hz), –159.54 ~ –160.14 (m), –160.77 (d, J = 87.8 Hz);
[4]
[5]
a) C. Huo, H. Zhang, H. Zhang, H. Zhang, B. Yang, P. Zhang, Y. Wang,
Inorg. Chem. 2006, 45, 4735–4742; b) X. Jiang, J. Peng, J. Wang, X.
Guo, D. Zhao, Y. Ma, ACS App. Mater. Interfaces 2016, 8, 3591–3600.
a) O. Suchard, R. Kane, B. J. Roe, E. Zimmermann, C. Jung, P. A.
Waske, J. Mattay, M. Oelgemöller, Tetrahedron 2006, 62, 1467–1473; b)
L. Huang, J. Zhao, S. Guo, C. Zhang, J. Ma, J. Org. Chem. 2013, 78,
5627–5637; c) W.-P. To, Y. Liu, T.-C. Lau, C.-M. Che, Chem. Eur. J.
2013, 19, 5654–5664.
[6]
[7]
[8]
a) X. Cui, J. Zhao, P. Yang, J. Sun, Chem. Comm. 2013, 49, 10221–
10223; b) T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev.
2010, 254, 2560–2573.
a) T. Yogo, Y. Urano, Y. Ishitsuka, F. Maniwa, T. Nagano, J. Am. Chem.
Soc. 2005, 127, 12162–12163; b) W. Wu, H. Guo, W. Wu, S. Ji, J. Zhao,
J. Org. Chem. 2011, 76, 7056–7064.
a) F. Heinemann, J. Karges, G. Gasser, Acc. Chem. Res. 2017, 50,
2727–2736; b) D. N. Kozhevnikov, V. N. Kozhevnikov, M. Z. Shafikov, A.
M. Prokhorov, D. W. Bruce, J. A. Gareth Williams, Inorg. Chem. 2011,
50, 3804–3815; c) X. Wang, S. Goeb, Z. Ji, N. A. Pogulaichenko, F. N.
Castellano, Inorg. Chem. 2011, 50, 705–707; d) T. Sajoto, P. I. Djurovich,
A. B. Tamayo, J. Oxgaard, W. A. Goddard, M. E. Thompson, J. Am.
Chem. Soc. 2009, 131, 9813–9822; e) J. I. Goldsmith, W. R. Hudson, M.
S. Lowry, T. H. Anderson, S. Bernhard, J. Am. Chem. Soc. 2005, 127,
7502–7510.
HRMS (FAB+): m/z
= 1474.0285 (found), 1474.0282 (Calcd for
C64H30F20N6Pd2), error + 0.2 ppm.
Data for 3-Pd-Pd: 1H NMR (CDCl3, ppm): d 6.52 (m, 4H), 6.48 (d, J = 4.7
Hz, 2H), 6.40 (d, J = 4.4 Hz, 2H), 5.94 (s, 2H), 2.27 (s, 6H), 1.76 (s, 6H);
19F NMR (CDCl3, ppm): d –137.49 (s), –137.55 (d, J = 22.4 Hz), –138.88
(d, J = 22.9 Hz), –139.36 (d, J = 22.4 Hz), –139.40 ~ –139.55 (m), –
151.52 (s), –151.57 (s), –151.61 (s), –151.68 (s), –151.74 (d, J = 19.0
Hz), –159.72 (t, J = 22.7 Hz), –160.06 (t, J = 18.8 Hz), –160.70 (s), –
160.75 (s), –160.77 (d, J = 21.5 Hz), –160.72 ~ –161.52 (m); HRMS
(FAB+): m/z = 1393.9684 (found), 1395.9656 (Calcd for C58H22F20N6Pd2),
error + 2.0 ppm.
Data for 4-Pd-Pd: 1H NMR (CDCl3, ppm): d 6.60 (m, 2H), 6.47 (d, J = 4.6
Hz, 2H), 6.42 (m, 2H), 6.37 (d, J = 4.4 Hz, 2H), 5.97 (s, 2H), 2.27 (d, J =
10.1 Hz, 6H), 1.75 (d, J = 13.9 Hz, 6H); 19F NMR (CDCl3, ppm): d –137.53
(m, 26.8 Hz), –138.95 (d, J = 28.3 Hz), –139.35 (d, J = 28.8 Hz), –151.65
(t, J = 22.9 Hz), –159.79 (t, J = 21.7 Hz), –159.99 (t, J = 21.8 Hz), –160.83
(t, J = 21.5 Hz), –161.04 (t, J = 21.8 Hz); HRMS (FAB+): m/z = 1393.9658
(found), 1395.9656 (Calcd for C58H22F20N6Pd2), error + 0.1 ppm.
[9]
a) Y. Che, W. Yang, G. Tang, F. Dumoulin, J. Zhao, L. Liu, Ü. İşci, J.
Mater. Chem. C 2018, 6, 5785–5793; b) M. Ethirajan, Y. Chen, P. Joshi,
R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340–362; c) T. N. Singh-
Rachford, F. N. Castellano, J. Phys. Chem. A 2008, 112, 3550–3556.
[10] a) A. Srinivasan, H. Furuta, Acc. Chem. Res. 2005, 38, 10–20; b) J. R.
Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds, K.
S. Schanze, Chem. Mater. 2011, 23, 5296–5304; c) M. Toganoh, H.
Furuta, Chem. Comm. 2012, 48, 937–954; d) V. V. Roznyatovskiy, C.-H.
Lee, J. L. Sessler, Chem. Soc. Rev. 2013, 42, 1921–1933; e) T.
Chatterjee, V. S. Shetti, R. Sharma, M. Ravikanth, Chem. Rev. 2017, 117,
3254–3328; f) S. Hiroto, Y. Miyake, H. Shinokubo, Chem. Rev. 2017, 117,
2910–3043.
[11] a) A. Singhal, in Top Curr Chem, 2018, 376, 21; b) J. L. Sessler, R. S.
Zimmerman, C. Bucher, V. Král, B. Andrioletti, Pure Appl. Chem. 2001,
73, 1041–1057; c) A. C. Y. Tay, B. J. Frogley, D. C. Ware, P. J. Brothers,
Dalton Trans. 2018, 47, 3388–3399.
[12] a) K. Araki, F. N. Engelmann, I. Mayer, H. E. Toma, M. S. Baptista, H.
Maeda, A. Osuka, H. Furuta, Chem. Lett. 2003, 32, 244–245; b) K. Araki,
F. N. Engelmann, I. Mayer, H. E. Toma, M. S. Baptista, H. Maeda, A.
Osuka, H. Furuta, J. Photochem. Photobiol. A. 2004, 163, 403–411.
[13] a) H. Furuta, T. Ishizuka, A. Osuka, Y. Uwatoko, Y.; Ishikawa, Angew.
Chem. Int. Ed. 2001, 40, 2323–2325; b) H. Furuta, T. Ishizuka, A. Osuka,
Inorg. Chem. Commun. 2003, 6, 398–401; c) P. Pushpanandan, Y. K.
Maurya, T. Omagari, R. Hirosawa, M. Ishida, S. Mori, Y. Yasutake, S.
Fukatsu, J. Mack, T. Nyokong, H. Furuta, Inorg. Chem. 2017, 56, 12572–
12580.
Acknowledgements
The present work was supported by Grants-in-Aid (JP15K13646
to H.F.; JP16K05700 and JP17H05377 to M.I.; JP17H02773 and
JP18K19029 to S.F.) from the Japan Society for the Promotion of
Science (JSPS).
[14] D.-H. Won, M. Toganoh, Y. Terada, S. Fukatsu, H. Uno, H. Furuta,
Angew. Chem. 2008, 47, 5438–5441.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.