Journal of the American Chemical Society
Page 4 of 4
1687–1693. (b) Carloni, P.; Damiani, E.; Iacussi, M.; Greci, L.; Stipa, P.; Cauzi, D.;
(20) Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97–3c: A revised
low–cost variant of the B97–D density functional method. J. Chem. Phys. 2018, 148.
(21) Grimme, S. Semiempirical GGA–type density functional constructed with a long–
range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.
Rizzoli, C.; Sgarabotto, P. Unexpected Deoxygenation of 2,2,6,6–Tetramethylpiperidine–1–
Oxyl (TEMPO) by Thiyl Radicals through the Formation of Arylsulphinyl Radicals.
Tetrahedron 1995, 51, 12445–12452.
1
2
3
4
5
6
7
8
9
(9) A small amount of tetramethylpiperidine also formed. The mechanism by which this
byproduct is formed is not clear; however, it has been reported that reactions of (Me3Si)3SiH
and thiyl radicals react with TEMPO to form tetramethylpiperidine. See Ref 8.
(10) Barshop, B. A.; Wrenn, R. F.; Frieden, C. Analysis of numerical methods for
computer simulation of kinetic processes: Development of KINSIM—A flexible, portable
system. Anal. Biochem. 1983, 130, 134–145.
(11) (a) Tedder, J. M. Which Factors Determine the Reactivity and Regioselectivity of
Free Radical Substitution and Addition Reactions? Angew. Chem., Int. Ed. 1982, 21, 401–
410. (b) Giese, B. Formation of CC Bonds by Addition of Free Radicals to Alkenes. Angew.
Chem., Int. Ed. 1983, 22, 753–764. (c) Beckwith, A. L. J. Centenary Lecture. The pursuit of
selectivity in radical reactions. Chem. Soc. Rev. 1993, 22, 143–151.
(22) Zhao, Y.; Truhlar, D. G. Design of density functionals that are broadly accurate for
thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A
2005, 109, 5656–5667.
(23) Goerigk, L.; Grimme, S. Efficient and Accurate Double–Hybrid–Meta–GGA
Density Functionals–Evaluation with the Extended GMTKN30 Database for General Main
Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput.
2011, 7, 291–309.
(24) (a) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations
in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139,
134101. (b) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps–A
systematic infrastructure for reduced–scaling electronic structure methods. II. Linear scaling
domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 2016, 144.
(25) (a) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Olsen, J. Basis–set
convergence of the energy in molecular Hartree–Fock calculations. Chem. Phys. Lett. 1999,
302, 437–446. (b) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.;
Olsen, J.; Wilson, A. K. Basis–set convergence in correlated calculations on Ne, N2, and
H2O. Chem. Phys. Lett. 1998, 286, 243–252.
(26) Pavošević, F.; Peng, C.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E. F.
SparseMaps–A systematic infrastructure for reduced scaling electronic structure methods. V.
Linear scaling explicitly correlated coupled–cluster method with pair natural orbitals. J.
Chem. Phys. 2017, 146, 174108.
(27) (a) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron–Affinities of the 1st–
Row Atoms Revisited – Systematic Basis–Sets and Wave–Functions. J. Chem. Phys. 1992,
96, 6796–6806. (b) Balabanov, N. B.; Peterson, K. A. Systematically convergent basis sets
for transition metals. I. All–electron correlation consistent basis sets for the 3d elements Sc–
Zn. J. Chem. Phys. 2005, 123, 064107. (c) Balabanov, N. B.; Peterson, K. A. Basis set limit
electronic excitation energies, ionization potentials, and electron affinities for the 3d
transition metal atoms: Coupled cluster and multireference methods. J. Chem. Phys. 2006,
125, 074110.
(28) Burchell, R. P. L.; Sirsch, P.; Decken, A.; McGrady, G. S. A structural study of
[CpM(CO)3H] (M = Cr, Mo and W) by single–crystal X–ray diffraction and DFT
calculations: sterically crowded yet surprisingly flexible molecules. Dalton Trans. 2009,
5851–5857.
(29) (a) Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U. Kinetics of nitroxide radical
trapping. 1. Solvent effects. J. Am. Chem. Soc. 1992, 114, 4983–4992. (b) Pattison, D. I.;
Lam, M.; Shinde, S. S.; Anderson, R. F.; Davies, M. J. The nitroxide TEMPO is an
efficient scavenger of protein radicals: Cellular and kinetic studies. Free Radical Biol. Med.
2012, 53, 1664–1674. (c) Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis
by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–88.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Tang, L.; Papish, E. T.; Abramo, G. P.; Norton, J. R.; Baik, M.–H.; Friesner, R.
A.; Rappé, A. Kinetics and Thermodynamics of H• Transfer from (η5–C5Ph5)Cr(CO)3H (R =
Ph, Me, H) to Methyl Methacrylate and Styrene. J. Am. Chem. Soc. 2003, 125, 10093–
10102.
(13) (a) Evans, M. G.; Polanyi, M. Inertia and driving force of chemical reactions. Trans.
Faraday Soc. 1938, 34, 11–24. (b) Mayer, J. M. Understanding Hydrogen Atom Transfer:
From Bond Strengths to Marcus Theory. Acc. Chem. Res. 2011, 44, 36–46.
(14) Beckwith, A.; Pigou, P. Relative Reactivities of Various Sulfides, Selenides and
Halides Towards SH2 Attack by Tributyltin Radicals. Aust. J. Chem. 1986, 39, 77–87.
(15) (a) Roberts, B. P. Polarity–reversal catalysis of hydrogen–atom abstraction
reactions: concepts and applications in organic chemistry. Chem. Soc. Rev. 1999, 28, 25–35.
(b) Roberts, B. P.; Steel, A. J. An extended form of the Evans–Polanyi equation: a simple
empirical relationship for the prediction of activation energies for hydrogen–atom transfer
reactions. J. Chem. Soc., Perkin Trans. 2 1994, 2155–2162. (c) Paul, V.; Roberts, B. P.
Polarity reversal catalysis of hydrogen atom abstraction reactions. J. Chem. Soc., Chem.
Commun. 1987, 1322–1324.
(16) Maynard, A. T.; Huang, M.; Rice, W. G.; Covell, D. G. Reactivity of the HIV–1
nucleocapsid protein p7 zinc finger domains from the perspective of density–functional
theory. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11578–11583.
(17) Parr, R. G.; Szentpály, L. v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc.
1999, 121, 1922–1924.
(18) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab
initio parametrization of density functional dispersion correction (DFT–D) for the 94
elements H–Pu. J. Chem. Phys. 2010, 132, 154104. (b) Grimme, S.; Ehrlich, S.; Goerigk, L.
Effect of the damping function in dispersion corrected density functional theory. J. Comput.
Chem. 2011, 32, 1456–1465. (c) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth,
C. Dispersion–Corrected Mean–Field Electronic Structure Methods. Chem. Rev. 2016, 116,
5105–5154.
(19) Zheng, J. J.; Xu, X. F.; Truhlar, D. G. Minimally augmented Karlsruhe basis sets.
Theor. Chem. Acc. 2011, 128, 295–305.
ACS Paragon Plus Environment