980
Vol. 56, No. 7
Table 4. Crystal and Experimental Data for FH
based on a redox reaction among H2O2, cobalt(II), and FH.
The proposed method is more sensitive and reproducible than
the previous method. On the occasion of characterization of
FH, the xanthene scaffold and benzene ring have two-faced-
ness and an almost formed spirolactam round form at right
angles to each other. As a result, it hardly probable that the
total fluorescence may have disappeared because an elec-
tronic conjugated system of the xanthene scaffold that was a
fluorescent characteristic of fluorescein collapsed by the for-
mation of a spirolactam ring. Although further investigations
are necessary for the elucidation of this reaction mechanism,
the developed procedure is suitable for the analysis of ROS
in clinical studies. In conclusion, the improved method offers
many advantages for H2O2 determination. First, the method
is remarkably improved with respect to reproducibility and
sensitivity in comparison with the former method. Second,
there is a remarkable improvement in the influences of for-
eign substances by this method. Finally, the new method is
superior to the former method with regard to the wide dy-
namic range of the calibration curve.
Formula
C20H14N2O4, CH3CN, 0.5(CH3OH)
Formula weight
403.41
Crystal system
Space group
Monoclinic
P21/n
A
B
C
b
V
Z
9.854(1) Å
8.643(1) Å
23.298(3) Å
91.687(2)°
1983.5(4) Å3
4
T
120(2) K
0.35ꢃ0.35ꢃ0.05 mm3
1.351 g cmꢀ3
844
Crystal size
Dx
F(000)
m(MoKa)
No. of reflections (obs)
0.096 mmꢀ1
21332
Rint
0.0275
qmax
27.10°
4361
No. of reflections (refine)
No. of reflections (Iꢄ2s(I))
No. of parameters
R
3478
296
0.0549
wR
0.16
Goodness of fit
(D/s)max
Fraction for qmax
Drmax
0.973
0.008
0.998
Acknowledgments The authors thank Dr. K. Minoura and Mrs. M. Fu-
jitake of Osaka University of Pharmaceutical Sciences for help with meas-
urements of NMR and MS. This study was supported by a Grant-in-Aid for
High Technology Research from Ministry of Education, Culture, Sports,
Science and Technology of Japan.
0.918 e Åꢀ3
ꢀ0.310 e Åꢀ3
Drmin
References
1) Ohshima H., Tatemichi M., Sawa T., Arch. Biochem. Biophys., 417,
3—11 (2003).
2) Shah M. A., Channon M. A., Heart, 90, 486—487 (2004).
3) Barnham J. K., Masters L. C., Bush I. A., Nat. Rev. Drug Discov., 3,
205—214 (2004).
4) “Metals and Oxidative Damage in Neurological Disorders,” ed. by
Connor R. J., Plenum Press, New York, 1997.
5) Kojou S., Vitamine, 79, 334—337 (2005).
6) “Molecular Biology of Free Radicals in Human Diseases,” ed. by
Aruoma I. O., Halliwell B., OICA International, Micoud St. Lucia,
1998.
7) Balaban S. R., Nemoto S., Finkel T., Cell, 120, 483—495 (2005).
8) Beckman B. K., Ames N. B., Physiol. Rev., 78, 547—581 (1998).
9) Vieira I. C., Filho O. F., Analyst, 123, 1809—1812 (1998).
10) Chai X.-S., Hou Q. X., Luo Q., Zhu J. Y., Anal. Chim. Acta, 507,
285—288 (2004).
11) Deiana L., Carru C., Pes G., Tadolini B., Free Radic. Res., 31, 237—
244 (1999).
12) Lazrus A. L., Kok G. L., Gitlin S. N., Lind J. A., McLaren S. E., Anal.
Chem., 57, 917—922 (1985).
13) Liu Z., Cai R., Mao L., Huang H., Ma W., Analyst, 124, 173—176
(1999).
Fig. 3. OTEP of FH
14) Odo J., Matsumoto K., Shinmoto E., Hatae Y., Shiozaki A., Anal. Sci.,
20, 707—710 (2004).
15) Chang M. C. Y., Pralle A., Isacoff E. Y., Chang C. J., J. Am. Chem,
Soc., 126, 15392—15393 (2004).
16) Maeda H., Fukuyasu Y., Yoshida S., Fukuda M., Saeki K., Matsuno
H., Yamaguchi Y., Yoshida K., Hirata K., Miyamoto K., Angew.
Chem., Int. Ed., 43, 2389—2391 (2004).
17) Setsukinai K., Urano Y., Kakinuma K., Majima H. J., Nagano T., J.
Biol. Chem., 278, 3170—3175 (2003).
18) Maeda H., Yamamoto K., Nomura Y., Kohno I., Hafsi L., Ueda N.,
Yoshida S., Fukuda M., Fukuyasu Y., Yamaguchi Y., Itoh N., J. Am.
Chem. Soc., 127, 68—69 (2005).
19) Zappacosta B., Persichilli S., Mormile F., Minucci A., Russo A., Giar-
dina B., De Sole P., Clin. Chim. Acta, 310, 187—191 (2001).
20) Yamashiro N., Uchida S., Satoh Y., Morishima Y., Yokoyama H., Satoh
T., Sugama J., Yamada R., J. Nucl. Sci. Technol., 41, 890—897 (2004).
21) Mori I., Takasaki K., Fujita Y., Matsuo T., Talanta, 47, 631—637
(1998).
formed with the benzene ring through hydrazine for a xan-
thene scaffold to have a plane structure and a spirolactam
round was formed with a connection that was almost right
angled. We found that hydrazation fluorescein would force
this platform to adopt a closed, colorless, and non-fluorescent
spirolactam form. Oxidation with H2O2 and other ROS
would subsequently produce the open, colored, and fluores-
cent fluorescein product.
Conclusion
We have described the synthesis, properties, application,
and characterization of fluorescein-hydrazide, a new class of
fluorescent probes for detecting ROS. A simple, highly sensi-
tive, and large dynamic range fluorometric method for the
determination of H2O2, was established with FH and
22) Baeyer A., Ber. Deut. Chem. Ges., 4, 555—558 (1871).
cobalt(II) in a DTAC micellar medium. This procedure is 23) Akita T., Yakugaku Zasshi, 81, 518—521 (1961).