10.1002/anie.202013017
Angewandte Chemie International Edition
COMMUNICATION
[16]
[17]
G. A. Bagiyan, I. K. Koroleva, N. V. Soroka, A. V. Ufimtsev, Russ. Chem.
Bull. 2003, 52, 1135–1141.
Acknowledgements
P.-Z. Wang, J.-R. Chen, W.-J. Xiao, Org. Biomol. Chem. 2019, 17,
6936–6951.
Financial support provided by the NSF (CHE 1856406) and
Novartis is warmly acknowledged with thanks. Support was also
provided, in part, by an NSF Major Research Instrumentation
award, MRI-1920299, for the purchase of NMR equipment. The
authors also acknowledge use of the ICP-MS facility within the UC
Center for Environmental Implications of Nanotechnology in CNSI
at UCLA.
[18]
[19]
G. La Sorella, G. Strukul, A. Scarso, Green Chem. 2015, 17, 644–683.
The only limitation observed thus far concerns aryl nitro-containing
pyridines. That is, for those that contain a bromide, competing coupling
at the nitro group (i.e., via loss of the NO2 moiety) appears to take place,
leading to a mixture of products.
[20]
[21]
[22]
J. P. Stambuli, in Catalysis Series (Ed.: T. Colacot), Royal Society Of
Chemistry, Cambridge, 2014, pp. 254–275.
T. Mandal, S. Jana, J. Dash, Euro. J. Org. Chem. 2017, 2017, 4972–
4983.
Keywords: aqueous micellar catalysis • axitinib • designer
a) L. L. Hegedus, R. W. McCabe, in Studies in Surface Science and
Catalysis (Eds.: B. Delmon, G.F. Froment), Elsevier, 1980, pp. 471–
505; b) G. Wilkinson, R. D. Gillard, J. A. McCleverty, Comprehensive
surfactant • Migita cross-coupling • nickel-catalysis
Coordination Chemistry. the Synthesis, Reactions, Properties
Applications of Coordination Compounds Vol. 6, Pergamon, Oxford,
1987.
&
[1]
[2]
T. Scattolin, E. Senol, G. Yin, Q. Guo, F. Schoenebeck, Angew. Chem.
Int. Ed. 2018, 57, 12425–12429; Angew. Chem. 2018, 130, 12605–
12609.
[23]
[24]
a) L.-H. Zhai, L.-H. Guo, Y.-H. Luo, Y. Ling, B.-W. Sun, Org. Process
Res. Dev. 2015, 19, 849–857; b) B. P. Chekal, S. M. Guinness, B. M.
Lillie, R. W. McLaughlin, C. W. Palmer, R. J. Post, J. E. Sieser, R. A.
Singer, G. W. Sluggett, R. Vaidyanathan, G. J. Withbroe, Org. Process
Res. Dev. 2014, 18, 266–274.
a) J. Oudar, Catalysis Reviews 1980, 22, 171–195; b) A. Kolpin, G.
Jones, S. Jones, W. Zheng, J. Cookson, A. P. E. York, P. J. Collier, S.
C. E. Tsang, ACS Catal. 2017, 7, 592–605.
[3]
[4]
I. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596–1636.
a) T. Norris, K. Leeman, Org. Process Res. Dev. 2008, 12, 869–876; b)
J. M. Ganley, C. S. Yeung, J. Org. Chem. 2017, 82, 13557–13562; c)
S. S. M. Bandaru, S. Bhilare, J. Cardozo, N. Chrysochos, C. Schulzke,
Y. S. Sanghvi, K. C. Gunturu, A. R. Kapdi, J. Org. Chem. 2019, 84,
8921–8940; d) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534–1544; f)
M. A. Fernández-Rodríguez, Q. Shen, J. F. Hartwig, J. Am. Chem. Soc.
2006, 128, 2180–2181; g) J. Xu, R. Y. Liu, C. S. Yeung, S. L. Buchwald,
ACS Catal. 2019, 9, 6461–6466; h) M. Cong, Y. Fan, J.-M. Raimundo,
Y. Xia, Y. Liu, G. Quéléver, F. Qu, L. Peng, Chem. Eur. J. 2013, 19,
17267–17272; i) “A. C. Jones, W. I. Nicholson, H. R. Smallman, D. L.
Z. Boros, L. Nagy-Győr, K. Kátai-Fadgyas, I. Kőhegyi, I. Ling, T. Nagy,
Z. Iványi, M. Oláh, G. Ruzsics, O. Temesi, B. Volk, J. Flow. Chem. 2019,
9, 101–113.
[25]
[26]
L. Finck, J. Brals, B. Pavuluri, F. Gallou, S. Handa, J. Org. Chem. 2018,
83, 7366–7372.
a) S. Sadhukhan, B. Baire, Advanced Synthesis & Catalysis 2018, 360,
298–304; b) K. K. Rajbongshi, D. Hazarika, P. Phukan, Tetrahedron
2016, 72, 4151–4158.
[27]
[28]
B. H. Lipshutz, N. A. Isley, J. C. Fennewald, E. D. Slack, Angew. Chem.
Int. Ed. 2013, 52, 10592–10958; Angew. Chem. 2013, 125, 11156–
11162.
Browne,
Org.
Lett.”,
can
be
found
under
[5]
[6]
[7]
[8]
[9]
M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila, J. W. Johannes,
J. Am. Chem. Soc. 2016, 138, 1760–1763.
R. A. Sheldon, Green Chem. 2017, 19, 18–43.
S. D. Timpa, C. J. Pell, O. V. Ozerov, J. Am. Chem. Soc. 2014, 136,
14772–14779.
B. A. Vara, X. Li, S. Berritt, C. R. Walters, E. J. Petersson, G. A.
Molander, Chem. Sci. 2018, 9, 336–344.
T. Migita, T. Shimizu, Y. Asami, J. Shiobara, Y. Kato, M. Kosugi, Bull.
Chem. Soc. Jpn. 1980, 53, 1385–1389.
a) B. Liu, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2017, 139,
13616–13619; b) C. Uyeda, Y. Tan, G. C. Fu, J. C. Peters, J. Am. Chem.
Soc. 2013, 135, 9548–9552.
[10]
a) C. Uyeda, Y. Tan, G. C. Fu, J. C. Peters, J. Am. Chem. Soc. 2013,
135, 9548–9552; b) R. S. Schwab, D. Singh, E. E. Alberto, P. Piquini,
O. E. D. Rodrigues, A. L. Braga, Catal. Sci. Technol. 2011, 1, 569; c) R.
Xu, J.-P. Wan, H. Mao, Y. Pan, J. Am. Chem. Soc. 2010, 132, 15531–
15533; d) H.-J. Xu, Y.-F. Liang, X.-F. Zhou, Y.-S. Feng, Org. Biomol.
Chem. 2012, 10, 2562; e) F. Y. Kwong, S. L. Buchwald, Org. Lett. 2002,
4, 3517–3520; f) A. Rostami, A. Rostami, A. Ghaderi, J. Org. Chem.
2015, 80, 8694–8704; g) S. S. Bahekar, A. P. Sarkate, V. M. Wadhai,
P. S. Wakte, D. B. Shinde, Cat. Comm. 2013, 41, 123–125.
[11]
[12]
a) Y.-C. Wong, T. T. Jayanth, C.-H. Cheng, Org. Lett. 2006, 8, 5613–
5616; b) F. M. Moghaddam, R. Pourkaveh, Cat. Commun. 2017, 94,
33–37.
a) D. Liu, H.-X. Ma, P. Fang, T.-S. Mei, Angew. Chem. Int. Ed. 2019,
58, 5033–5037; Angew. Chem. 2019, 131, 5087–5091; b) Y. Wang, L.
Deng, X. Wang, Z. Wu, Y. Wang, Y. Pan, ACS Catal. 2019, 9, 1630–
1634;
[13]
a) R. Sikari, S. Sinha, S. Das, A. Saha, G. Chakraborty, R. Mondal, N.
D. Paul, J. Org. Chem. 2019, 84, 4072–4085; b) A. R. Martin, D. J.
Nelson, S. Meiries, A. M. Z. Slawin, S. P. Nolan, Eur. J. Org. Chem.
2014, 2014, 3127–3131; c) S.-C. Lee, H.-H. Liao, A. Chatupheeraphat,
M. Rueping, Chem. Eur. J. 2018, 24, 3608–3612; d) K. D. Jones, D. J.
Power, D. Bierer, K. M. Gericke, S. G. Stewart, Org. Lett. 2018, 20,
208–211.
[14]
[15]
“N,N-dimethylformamide - Substance Information - ECHA,” A. C. Jones,
W. I. Nicholson, H. R. Smallman, D. L. Browne, Org.
Lett. 2020, 22, 7433–7438.
S. Kim, M. J. Goldfogel, M. M. Gilbert, D. J. Weix, J. Am. Chem. Soc.
2020, 142, 9902–9907.
6
This article is protected by copyright. All rights reserved.