Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Friese, M. Banasiewicz, V. Hugues,DOBI:. 10K.1o0z3a9n/kDi0eCwCic0z0,39M8K.
Blanchard-Desce and D. T. Gryko, Org. Biomol. Chem., 2016, 14,
2025; (d) D. H. Friese, A. Mikhaylov, M. Krzeszewski, Y. M.
Poronik, A. Rebane, K. Ruud and D. T. Gryko, Chem. – Eur. J.,
2016, 21, 18364; (e) M. Grzybowski, V. Hugues, M. Blanchard-
Desce and D. T. Gryko, Chem. – Eur. J., 2014, 20, 12493; (f) S.
Richert, S. Mosquera Vazquez, M. Grzybowski, D. T. Gryko, A.
Kyrychenko and E. Vauthey, J. Phys. Chem. B, 2014, 118, 9952.
12 (a) G. M. Fischer, E. Daltrozzo and A. Zumbusch, Angew. Chem.,
Int. Ed., 2011, 50, 1406; (b) W. J. Akers, C. Kim, M. Berezin, K.
Guo, R. Fuhrhop, G. M. Lanza, G. M. Fischer, E. Daltrozzo, A.
Zumbusch, X. Cai, L. V. Wang and S. Achilefu, ACS Nano, 2011, 5,
173; (c) G. M. Fischer, C. Jüngst, M. Isomäki-Krondahl, D. Gauss,
H. M. Möller, E. Daltrozzo and A. Zumbusch, Chem. Commun.,
2010, 46, 5289; (d) G. M. Fischer, M. Isomäki- Krondahl, I.
Göttker-Schnetmann, E. Daltrozzo and A. Zumbusch, Chem. –
Eur. J., 2009, 15, 4857; (e) M. Fischer, A. P. Ehlers, A. Zumbusch
and E. Daltrozzo, Angew. Chem., Int. Ed., 2007, 46, 3750.
13 (a) S. Shimizu, A. Murayama, T. Haruyama, T. Iino, S. Mori, H.
Furuta and N. Kobayashi, Chem. – Eur. J., 2015, 21, 12996; (b) M.
Tamada, T. Iino, Y. Wang, M. Ide, A. Saeki, H. Furuta, N. Kobayashi
and S. Shimizu, Tetrahedron Lett., 2017, 58, 3151; (c) M. Fukuda,
S. Mori, H. Furuta and S. Shimizu, Chem. –Asian. J., 2019, 14,
1697.
PPAB-based small molecules are highly promising as new
materials in photovoltaic applications.
In this study, we presented three panchromatic A-D-A small
molecules, using DPP or PPAB or both as acceptors and CPDT as
a donor. We found that the CPDT moiety bearing branched alkyl
chains is a suitable mediator to enhance interchromophore
interactions. The absorption spectra of T1–T3 indicated that the
replacement of DPP with PPAB from T1 to T3 broadened the
absorption in the UV/vis/NIR region and increased the molar
absorption coefficients. In the OPV studies, T3 exhibited the
highest PCE and Jsc among the triads due to its panchromatic
absorption in the UV/vis/NIR regions and high absorptivity. Our
current results demonstrate that the A-D-A structural motif
based on PPAB is an effective approach to achieve
panchromatic photovoltaics with high PCE values, which can
further be improved by optimizing the donor unit. Research
along this direction is being intensively investigated in our
laboratory.
This work was supported by Grants-in-Aids from JSPS (Nos.
JP26708003 and JP19H02703). The authors thank Ms. Natsuko
Ide for the TEM measurements.
14 (a) S. Shimizu, Chem. Commun., 2019, 55, 8722; (b) S. Shimizu, T.
Iino, A. Saeki, S. Seki and N. Kobayashi, Chem. – Eur. J., 2015, 21,
2893; (c) S. Shimizu, T. Iino, Y. Araki and N. Kobayashi, Chem.
Commun., 2013, 49, 1621.
Conflicts of interest
15 L. Li, L. Wang, H. Tang and D. Cao, Chem. Commun., 2017, 53,
8352.
There are no conflicts to declare.
16 Y. Zhou, C. Ma, N. Gao, Q. Wang, P.-C. Lo, K. S. Wong, Q.-H. Xu, T.
Kinoshita and D. K. P. Ng, J. Mater. Chem. B, 2018, 6, 5570.
17 K. Miki, A. Enomoto, T. Inoue, T. Nabeshima, S. Saino, S. Shimizu,
H. Matsuoka and K. Ohe, Biomacromolecules, 2017, 18, 249.
18 C. Wu, X. Huang, Y. Tang, W. Xiao, L. Sun, J. Shao and X. Dong,
Chem. Commun., 2019, 55, 790.
19 R. Ishimatsu, H. Shintaku, Y. Kage, M. Kamioka, S. Shimizu, K.
Nakano, H. Furuta and T. Imato, J. Am. Chem. Soc., 2019, 141,
11791.
20 Y. Kage, S. Mori, M. Ide, A. Saeki, H. Furuta and S. Shimizu, Mater.
Chem. Front., 2018, 2, 112.
21 A. Pickett, A. Mohapatra, A. Laudari, S. Khanra, T. Ram, S. Patil
and S. Guha, Org. Electron., 2017, 45, 115.
22 Y. Yu, Y. Wu, A. Zhang, C. Li, Z. Tang, W. Ma, Y. Wu and W. Li, ACS
Appl. Mater. Interf., 2016, 8, 30328.
23 J. Yu, B. Zhao, X. Nie, B. Zhou, Y. Li and J. Hai, New J. Chem., 2015,
39, 2248.
24 U. Koldemir, J. S. Tinkham, R. Johnson, B. Lim, H. A. Yemam, K. J.
Gagnon, S. Parkin and A. Sellinger, J. Mater. Chem. C, 2017, 5,
8723.
25 A. Rana, Y. Hong, T. Y. Gopalakrishna, H. Phan, T. S. Herng, P.
Yadav, J. Ding, D. Kim and J. Wu, Angew. Chem., Int. Ed., 2018,
57, 12534.
Notes and references
1
(a) J. S. Zambounis, Z. Hao and A. Iqbal, Nature, 1997, 388, 131;
(b) A. Iqbal, M. Jost, R. Kirchmayr, J. Pfenninger, A. Rochat and O.
Wallquist, Bull. Soc. Chim. Belg., 1988, 97, 615; (c) Z. M. Hao and
A. Iqbal, Chem. Soc. Rev., 1997, 26, 203.
2
3
M. Grzybowski and D. T. Gryko, Adv. Opt. Mater., 2015, 3, 280.
C. B. Nielsen, M. Turbiez and I. McCulloch, Adv. Mater., 2013, 25,
1859.
4
5
B. Lim, H. Sun, J. Lee and Y. Y. Noh, Sci. Rep., 2017, 7, 164.
Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu and D. Zhu, J. Am.
Chem. Soc., 2012, 134, 4084.
6
7
A. Tang, C. Zhan, J. Yao and E. Zhou, Adv. Mater., 2017, 29,
1600013.
(a) W. Shin, T. Yasuda, Y. Hidaka, G. Watanabe, R. Arai, K. Nasu,
T. Yamaguchi, W. Murakami, K. Makita and C. Adachi, Adv.
Energy Mater., 2014, 4, 1400879; (b) W. Shin, T. Yasuda, G.
Watanabe, Y. S. Yang and C. Adachi, Chem. Mater., 2013, 25,
2549.
8
(a) W. Li, K. H. Hendriks, M. M. Wienk and R. A. J. Janssen, Acc.
Chem. Res., 2016, 49, 78; (b) M. Li, A. H. Balawi, P. J. Leenaers, L.
Ning, G. H. L. Heintges, T. Marszalek, W. Pisula, M. M. Wienk, S.
C. J. Meskers, Y. Yi, F. Laquai and R. A. J. Janssen, Nat. Commun.,
2019, 10, 2867; (c) G. H. L. Heintges and R. A. J. Janssen, RSC Adv.,
2019, 9, 15703; (d) K. H. Hendriks, W. Li, M. M. Wienk and R. A.
J. Janssen, J. Am. Chem. Soc., 2014, 136, 12130; (e) W. Li, A.
Furlan, K. H. Hendriks, M. M. Wienk and R. A. J. Janssen, J. Am.
Chem. Soc., 2013, 135, 5529.
26 (a) M. U. Winters, J. Kärnbratt, M. Eng, C. J. Wilson, H. L.
Anderson and B. Albinsson, J. Phys. Chem. C, 2007, 111, 7192; (b)
M. K. Kuimova, M. Balaz, H. L. Anderson and P. R. Ogilby, J. Am.
Chem. Soc., 2009, 131, 7948; (c) M. K. Kuimova, S. W. Botchway,
A. W. Parker, M. Balaz, H. A. Collins, H. L. Anderson, K. Suhling
and P. R. Ogilby, Nat. Chem., 2009, 1, 69.
27 K. H. Park, S. Ooi, T. Kim, T. Tanaka, A. Osuka and D. Kim, Phys.
Chem. Chem. Phys. 2016, 18, 23374.
9
S. Qu and H. Tian, Chem. Commum., 2012, 48, 3039.
10 G. Oklem, X. Song, L. Toppare, D. Baran and G. Gunbas, J. Mater.
Chem. C, 2018, 6, 2957.
11 (a) M. Krzeszewski, E. M. Espinoza, C. Červinka, J. B. Derr, J. A.
Clark, D. Borchardt, G. J. O. Beran, D. T. Gryko and V. I. Vullev,
Angew. Chem., Int. Ed., 2018, 57, 12365; (b) A. Purc, E. M.
Espinoza, R. Nazir, J. J. Romero, K. Skonieczny, A. Jeżewski, J. M.
Larsen, D. T. Gryko and V. I. Vullev, J. Am. Chem. Soc., 2016, 138,
28 C.-Z. Li, H.-L. Yip and A. K.-Y. Jen, J. Mat. Chem., 2012, 22, 4161.
29 T. M. Clarke and J. R. Durrant, Chem. Rev., 2010, 110, 6736.
30 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789.
31 B. P. Rand, D. P. Burk and S. R. Forrest, Phys. Rev. B, 2007, 75,
115327.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins