114 M.H. Mosslemin et al.
3.1. General procedure
To a magnetically stirred solution of thiol (2 mmol), a solution of arylglyoxal (1 mmol) in 20 mL
glacial acetic acid was added. The resulting mixture was stirred for 20 min under reflux. After
cooling, the crude homodisulfide was isolated by filtration and was purified by recrystallization
in ethanol and water (3:1).
3.2. 2-Hydroxy-1-(4-nitrophenyl) ethanone (3)
Cream colored solid, m.p. 179–181 ◦C. IR (KBr) (νmax, cm−1): 1703 (C O), 3525 (OH).Analysis:
=
Calcd for C8H7NO4 (181): C, 53.04; H, 3.89; N, 7.73%, Found: C, 53.16; H, 3.94; N, 7.61%. 1H
NMR (500.1 MHz, CDCl3): δ 3.34 (1H, s, OH), 5.29 (2H, s, CH2), 8.26 (2CH, d, 3JHH = 8 Hz,
2H), 8.34 (2CH, d, 3JHH = 8 Hz, 2H). 13C NMR (CDCl3): δ = 195.7 (C O), 150.2, 139.0, 131.2,
=
124.0 9 (4CH aromatic), 90.5 (CH2).
Acknowledgements
The authors gratefully acknowledge the financial support from the Research Council of Islamic Azad University of Yazd
and The Islamic Azad University of Zahedan of Iran.
Note
1. It has been pointed out that, nevertheless, H2O2 is not a very good reagent for this reaction, since it gives sulfonic
acids as well as disulfides.
References
(1) Jocelyn, D.C. Biochemistry of the Thiol Group; Academic Press: New York, 1992; pp 1–40.
(2) Capozzi, G.; Modena, G. InThe Chemistry ofThiol Group; Part 2; Patai, S., Ed.;Wiley: NewYork, 1974; pp 785–839.
(3) (a) Kuhle, E. The Chemistry of the Sulfenic Acids; Georg Thieme Verlag: Stuttgart, 1973; (b) Douglass, I.B.; Norton,
R.V. J. Org .Chem. 1968, 33, 2104–2106; (c) Douglass, I.B. J. Org. Chem. 1974, 39, 563–564.
(4) (a) Capozzi, G.; Modena, G. In The Chemistry of the Thiol Group, Part 2; Patai, S., Ed.; Wiley: New York, 1974;
pp 785–839; (b) Block, E. Reactions of Organosulfur Compounds; Academic Press: New York, 1978.
(5) Evans, B.J.; Doi, J.T.; Musker, W.K. J. Org. Chem. 1990, 55, 2337–2344.
(6) Noureldin, N.A.; Caldwell, M.; Hendry, J.; Lee, D.G. Synthesis 1998, 11, 1587–1589.
(7) Aida, T.; Akasaka, T.; Furukawa, N.; Oae, S. Bull. Chem. Soc. Jpn. 1976, 49, 1441. See also, Fristad, W.E.; Peterson,
J.R. Synth. Commun. 1985, 15, 1–5.
(8) Drabowicz, J.; Mikolajczyk, M. Synthesis 1980, 1, 32–33.
(9) Ali, M.H.; McDermott, M. Tetrahedron Lett. 2002, 43, 6271–6273.
(10) McKillop, A.; Koyuncu, D.; Krief, A.; Dumont, W.; Renier, P.; Trabelsi, M. Tetrahedron Lett. 1990, 31, 5007–5010.
(11) Iranpoor, N.; Zeynizadeh, B. Synthesis 1999, 1, 49–50.
(12) Raghavan, S.; Rajender, A.; Joseph, S.C.; Rasheed, M.A. Synth. Commun. 2001, 31, 1477–1480.
(13) Zhan, Z.-P.; Lang, K.; Liu, F.; Hu, L.-M. Synth. Commun. 2004, 34, 3203–3208.
(14) Tanaka, K.; Ajiki, K. Tetahedron Lett. 2004, 45, 25–27.
(15) Khazaei, A.; Zolfigol, M.A.; Rostami, A. Synthesis 2004, 18, 2959–2961.
(16) (a) Patel, S.; Mishra, B.K. Tetrahedron Lett. 2004, 45, 1371–1372; (b) Tajbakhsh, M.; Hosseinzadeh, R.; Shakoori,
A. Tetrahedron Lett. 2004, 45, 1889–1893.
(17) (a) Leite, S.L.S.; Pardini, V.L.; Viertler, H. Synth. Commun. 1990, 20, 393; (b) Shono, T. Electroorganic Chemistry
as a New Tool in Organic Synthesis; Springer: NY, 1984; pp 38–43.
(18) Kesavan, V.; Bonnet-Delpon, D.; Begue, J.-P. Synthesis 2000, 2, 223–225.
(19) Meshram, H.M.; Bandyopadhyay, A.; Reddy, G.S.; Yadav, J.S. Synth. Commun. 2000, 30, 701–706.
(20) Firouzabadi, H.; Abbassi, M.; Karimi, B. Synth. Commun. 1999, 29, 2527–2531.
(21) Leino, R.; Lönnqvist, J.-E. Tetrahedron Lett. 2004, 45, 8489–8491.
(22) Hekmatshoar, R.; Sajadi, S.; Heravi, Majid, M.; Bamoharram, F.F. Molecules 2007, 12, 2223–2228.
(23) Banfield, S.C.; Omori, A.T.; Leisch, H. J. Org. Chem. 2007, 72, 4989–4992.