R. J. Cherney et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5063–5065
5065
Table 3
Evaluation of 14 and 15 versus the E291A CCR2 mutant
a
a
Compound
WT CCR2 IC50 (nM)
E291A IC50 (nM)
E291A fold change
14
15
6.1
12
749.3
380.8
123
32
a
IC50 values are n = 1.
Glu291 (32-fold shift, Table 3). This represents a departure from
the cyclohexyl derivatives, which did not have a large reliance on
Glu291 when examined in the E291A mutant, as reported
previously.10
In conclusion, we have described the synthesis and evaluation
of novel piperidine derivatives as potent CCR2 antagonists. As ob-
served for the comparison of cyclohexane 2 to piperidine 14, addi-
tion of the piperidine nitrogen alone can afford a significant
enhancement in CCR2 affinity. From a binding study with the
E291A CCR2 mutant, this enhanced affinity appears to be attrib-
uted to an interaction with Glu291 within the CCR2 receptor.
Scheme 2. Reagents and conditions: (a) TFA, CH2Cl2; (b) i—crotyl bromide, K2CO3,
CH3CN; ii—H2, Pd/C, MeOH; (c) 4-methylthiobenzaldehyde, NaBH3CN, ZnCl2, MeOH;
(d) 4-methylthiobenzoic acid, NMM, HATU, DMF.
Unlike the piperidine nitrogen, the benzyl amine could be con-
verted to an amide and retain significant CCR2 affinity. As shown in
Table 2, the unsubstituted piperidine derivative 15 lost only 4-fold
in CCR2 affinity when compared to its benzyl amine analog 14. The
amide derivatives with small N-alkyl piperidines were essentially
equipotent to their benzyl amine counterparts as shown by N-bu-
tyl 19, N-methyl 30, and N-propyl 31. As before, these derivatives
lost all CCR2 activity when a carbamate was installed on the piper-
idine nitrogen (see derivative 32).
Acknowledgments
We thank Mr. Dayton T. Meyer and Ms. Ruowei Mo for several
of the benzoic acids used in this work. We also thank Dr. Joel
C. Barrish for a critical review of the manuscript.
References and notes
Given the 180-fold enhancement in CCR2 binding affinity of
piperidine 14 as compared to the cyclohexyl derivative 2, it was
suspected that the piperidine nitrogen of 14 was making a new
contact within the CCR2 receptor. In order to gain additional in-
sight into this interaction, we examined the binding of piperidine
14 in a CCR2 receptor mutant. Of the GPCRs, chemokine receptors
are unique in that they contain a conserved glutamic acid (Glu) in
transmembrane domain-7 (TM-7).16 In CCR2, this is Glu291, which
has been shown to be critical for small molecule antagonist bind-
ing via site-directed receptor mutagenesis with the Glu291 to
Ala291 mutant (E291A).17 Piperidine 14 was examined in
wild-type CCR2 and the E291A mutant in order to assess the
involvement of Glu291 in its binding (Table 3). As evident from
the 123-fold change in binding between wild-type CCR2 and the
E291A mutant, piperidine 14 had a significant reliance on Glu291
for its binding affinity. A second derivative, 15, was examined in
the E291A mutant, and it also displayed a large reliance on
1. (a) D’Elios, M. M.; Del Prete, G.; Amedei, A. Expert Opin. Ther. Patents 2008, 18,
309; (b) Horuk, R. ScientificWorldJournal 2007, 7, 224; (c) Charo, I. F.; Ransohoff,
R. M. N. Eng. J. Med. 2006, 354, 610.
2. (a) Allen, S. J.; Crown, S. E.; Handel, T. M. Annu. Rev. Immunol. 2007, 25, 787; (b)
Murphy, P. M.; Baggiolini, M.; Charo, I. F.; Hebert, C. A.; Horuk, R.; Matsushima,
K.; Miller, L. H.; Oppenheim, J. J.; Power, C. A. Pharmacol. Rev. 2000, 52, 145.
3. Daly, C.; Rollins, B. J. Microcirculation 2003, 10, 247.
4. Feria, M.; Diaz-Gonzalez, F. Expert Opin. Ther. Patents 2006, 16, 49.
5. Tak, P. P. Best Pract. Res. Clin. Rheumatol. 2006, 20, 929.
6. (a) Coll, B.; Alonso-Villaverde, C.; Joven, J. Clin. Chim. Acta 2007, 383, 21; (b)
Peters, W.; Charo, I. F. Curr. Opin. Lipidol. 2001, 12, 175.
7. Mahad, D. J.; Ransohoff, R. M. Semin. Immunol. 2003, 15, 23.
8. Kamei, N.; Tobe, K.; Suzuki, R.; Ohsugi, M.; Watanabe, T.; Kubota, N.; Ohtsuka-
Kowatari, N.; Kumagai, K.; Sakamoto, K.; Kobayashi, M.; Yamauchi, T.; Ueki, K.;
Oishi, Y.; Nishimura, S.; Manabe, I.; Hashimoto, H.; Ohnishi, Y.; Ogata, H.;
Tokuyama, K.; Tsunoda, M.; Ide, T.; Murakami, K.; Nagai, R.; Kadowaki, T. J. Biol.
Chem. 2006, 281, 26602.
9. (a) Carter, P. H.; Cherney, R. J.; Mangion, I. K. Annu. Rep. Med. Chem. 2007, 42,
211; (b) Dawson, J.; Miltz, W.; Mir, A. K.; Wiessner, C. Expert Opin. Ther. Targets
2003, 7, 35.
10. Cherney, R. J.; Mo, R.; Meyer, D. T.; Nelson, D. J.; Lo, Y. C.; Yang, G.; Scherle, P. A.;
Mandlekar, S.; Wasserman, Z. R.; Jezak, H.; Solomon, K. A.; Tebben, A. J.; Carter,
P. H.; Decicco, C. P. J. Med. Chem. 2008, 51, 721.
11. (a) Marquis, R. W.; Ru, Y.; Zeng, J.; Trout, R. E. L.; LoCastro, S. M.; Gribble, A. D.;
Witherington, J.; Fenwick, A. E.; Garnier, B.; Tomaszek, T.; Tew, D.; Hemling, M.
E.; Quinn, C. J.; Smith, W. W.; Zhao, B.; McQueney, M. S.; Janson, C. A.; D’Alessio,
K.; Veber, D. F. J. Med. Chem. 2001, 44, 725; (b) D’Andrea, S. V.; Michalson, E. T.;
Freeman, J. P.; Chidester, C. G.; Szmuszkovicz, J. J. Org. Chem. 1991, 56, 3133.
12. Carter, P. H.; Cherney, R. J. Diamines as modulators of chemokine receptor
activity. WO 2002050019, 2002.
Table 2
Evaluation of benzamide piperidine derivativesa
13. Wacker, D. A.; Santella, J. B., III; Gardner, D. S.; Varnes, J. G.; Estrella, M.;
DeLucca, G. V.; Ko, S. S.; Tanabe, K.; Watson, P. S.; Welch, P. K.; Covington, M.;
Stowell, N. C.; Wadman, E. A.; Davies, P.; Solomon, K. A.; Newton, R. C.; Trainor,
G. L.; Friedman, S. M.; Decicco, C. P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2002,
12, 1785.
14. Moree, W. J.; Kataoka, K.; Ramirez-Weinhouse, M. M.; Shiota, T.; Imai, M.;
Tsutsumi, T.; Sudo, M.; Endo, N.; Muroga, Y.; Hada, T.; Fanning, D.; Saunders, J.;
Kato, Y.; Myers, P. L.; Tarby, C. M. Bioorg. Med. Chem. Lett. 2008, 18, 1869.
15. Carter, P. H.; Brown, G. D.; Friedrich, S. R.; Cherney, R. J.; Tebben, A. J.; Lo, Y. C.;
Yang, G.; Jezak, H.; Solomon, K. A.; Scherle, P. A.; Decicco, C. P. Bioorg. Med.
Chem. Lett. 2007, 17, 5455.
16. Rosenkilde, M. M.; Schwartz, T. W. Curr. Top. Med. Chem. 2006, 6, 1319.
17. (a) Berkhout, T. A.; Blaney, F. E.; Bridges, A. M.; Cooper, D. G.; Forbes, I. T.;
Gribble, A. D.; Groot, P. H. E.; Hardy, A.; Ife, R. J.; Kaur, R.; Moores, K. E.; Shillito,
H.; Willetts, J.; Witherington, J. J. Med. Chem. 2003, 46, 4070; (b) Mirzadegan,
T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky, I.; McCarley, D.; Mulkins, M.;
Weatherhead, G. S.; Lapierre, J.-M.; Dankwardt, J.; Morgans, D., Jr.; Wilhelm,
R.; Jarnagin, K. J. Biol. Chem. 2000, 275, 25562.
b
Compound
X
R1
IC50 (nM)
Ca flux
CCR3
binding %
inh. at
CCR2
binding
CTX monoc
10 l
Md
15
19
30
31
32
NH
2-NH2
28 7.1 (2) 75 0.7 (2) 109 58.0 (2) 19.7
NBu 2-NH2
NMe 2-NH2
NPr 3-NH2
4.3 0.73 (3) 13 (1)
1.8 0.3 (2) 2 (1)
6.2 0.9 (2) 6.0 (1)
17.5 2.1 (2) 77
38.5 9.2 (2) 43.1
25.0 19.8 (2) NT
NBoc 2-NHBoc 0% at 1
lM
NT
NT
NT
a
Compounds are racemic, one enantiomer is displayed for illustrative purposes.
IC50 values (n) are displayed as mean SD (n = 2) and mean SEM (n > 2).
CTX mono, chemotaxis in monocytes.
b
c
d
CCR3 % inhibition are n = 1. NT, not tested.