European Journal of Organic Chemistry
10.1002/ejoc.202100822
COMMUNICATION
catalyst and give the important intermediate H–Pd–SMe species
[11] a) X. Wang, F. Liu, Z. Yan, Q. Qiang, W. Huang, Z. Rong, ACS Catal.
2021, 11, 7319–7326; b) X. Yang, G. C. Tsui, Chem. Sci. 2018, 9, 8871–
1
0. The organometallic nucleophile (H–Pd–SMe) undergoes
8875.
transmetalation with Ar–M–L 3 to form the intermediate 4 that is
followed by reductive elimination to give the desired aryl methyl
sulfides. And the active Pd0 species 6 could be regenerated after
the reaction between H–Pd–X and a base.
In conclusion, we have described grenral and functional–
group–tolerant Pd–catalyzed transthiolation system to coupling of
aryl triflates with methyl 3–(methylthio) propanoate and its
derivatives. With methyl 3–(methylthio) propanoate as the low
toxicity, odorless, easily available, and stable methyl mercaptan
surrogates, the desired sulfide was produced in moderate to good
yields. The method exhibits a broad scope and a high tolerance
for functionality.
Acknowledgements
The authors are thankful for the financial support from the
Anhui Natural Science Foundation (19252004), Key R & D
projects in Anhui Province(202104a06020008), the Anhui
Leading Talent Project (03011002), Hefei Returned Students
Innovation and Entrepreneurship Support Program.
Keywords: Cleavage reactions • Cross-coupling • Csp3-S
activation • Elimination • MeSH Surrogate
[
1]
2]
a) H. Inoue, M. Konda, T. Hashiyama, H. Otsuka, K. Takahashi, M. Gaino,
T. Date, K. Aoe, M. Takeda, J. Med. Chem. 1991, 34, 675–687; b) I. P.
Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596–1636.
A. Kuiper, S. Grünewald, E. Murphy, M. A. Coenen, H. Eggink, R. Zutt,
M. E. Rubio-Gozalbo, A. M. Bosch, M. Williams, T. G. J. Derks, R. H. L.
Lachmann, M. C. G. J. Brouwers, M. C. H. Janssen, M. A. Tijssen, T. J.
de Koning, J. Inherit. Metab. Dis. 2019, 42, 451-458.
[
[3]
[4]
[5]
R. Frassanito, G. De Socio, D. Laura, D. Rotilio, J. Agr. Food Chem. 1996,
44, 2282–2286.
S. K. Papiernik, S. R. Yates, W. C. Koskinen, B. Barber, J. Agr. Food
Chem. 2007, 55, 8630–8639.
a) N. Sundaravelu, S. Sangeetha, G. Sekar, Org. Biomol. Chem. 2021,
19, 1459–1482; b) K. Choudhuri, M. Pramanik, P. Mal, J. Org. Chem.
2020, 85, 11997–12011; c) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A.
Hor, X. Liu, Chem. Soc. Rev. 2015, 44, 291–314; d) J. Li, S. Yang, W.
Wu, H. Jiang, Org. Chem. Front. 2020, 7, 1395–1417; e) J. Lou, Q. Wang,
P. Wu, H. Wang, Y. Zhou, Z. Yu, Chem. Soc. Rev. 2020, 49, 4307–4359.
a) M. A. Fernández–Rodríguez, Q. Shen, J. F. Hartwig, Chem.–Eur. J.
[6]
2006, 12, 7782–7796; b) J. Li, W. Bao, Y. Zhang, Y. Rao, Eur. J. Org.
Chem. 2019, 2019, 7175–7178; c) R. K. Sharma, R. Gaur, M. Yadav, A.
K. Rathi, J. Pechousek, M. Petr, R. Zboril, M. B. Gawande,
ChemCatChem. 2015, 7, 3495–3502; d) R. Panigrahi, S. K. Sahu, P. K.
Behera, S. Panda, L. Rout, Chem.–Eur. J. 2020, 26, 620–624; e) L. Rout,
P. Saha, S. Jammi, T. Punniyamurthy, Eur. J. Org. Chem. 2008, 2008,
640–643.
[7]
a) N. Sundaravelu, S. Sangeetha, G. Sekar, Org. Biomol. Chem. 2021,
19, 1459–1482; b) T. B. Nguyen, Adv. Synth. Catal. 2017, 359, 1066–
1130.
[
[
[
8]
M. Wang, Z. Qiao, J. Zhao, X. Jiang, Org. Lett. 2018, 20, 6193–6197.
Y. Li, G. Bao, X. Wu, Chem. Sci. 2020, 11, 2187–2192.
9]
10] a) M. Kitamura, K. Murakami, T. Koga, T. Eto, A. Ishikawa, H. Shimooka,
T. Okauchi, Eur. J. Org. Chem. 2019, 2019, 5824–5827; b) N. Y. More,
M. Jeganmohan, Eur. J. Org. Chem. 2017, 2017, 4305–4312; c) L. Hao,
G. Ding, D. A. Deming, Q. Zhang, Eur. J. Org. Chem. 2019, 2019, 7307–
7321.
4
This article is protected by copyright. All rights reserved.