scaffold (in comparison with the protoype TCPP building block) on
the thermal stability of the crystalline coordination materials it forms
cannot be assessed at this time due to the limited results available thus
far.
This research was supported by The Israel Science Foundation
(grant no 502/08).
Notes and references
ꢁ
1
‡
Compound 1. FT-IR (cm ): 3371(b), 2946(w, nC–H), 1751(s, nC]O
asymmetric), 1602(s, nC]C), 1506(s, nC]C), 1431(m, nC]O symmetric),
295(m), 1214(m, nC–O), 1177(s), 1075(m), 974(w), 801(s), 710(w), 604(w).
1
1
H-NMR (CDCl
3
): 8.78 (8H, s), 8.07 (8H, d, J ¼ 8.6 Hz), 7.23 (8H, d, J ¼
ꢁ
1
.6 Hz), 4.88 (8H, s), 3.89 (12H, s). Compound 2 . FT-IR (cm ): 3384(b),
8
2
1
6
895(w, nC–H), 1729(s, nC]O asymmetric), 1598(s, nC]C), 1491(s, nC]C),
421(m, nC]O symmetric), 1222(bm, nC–O), 1173(m), 1065(s), 820(s),
1
87(m), 598(w), 520(w). H-NMR (DMSO-d ): 8.85 (8H, s), 8.13 (8H, d,
6
Fig.
5 The simplified network structure of complex 4. The
J ¼ 8.6 Hz), 7.36 (8H, d, J ¼ 8.6 Hz), 4.98 (8H, s).
x Compound 3. yield: 10% (based on Cu). FT-IR (cm ): 3448(bm),
343(bs), 2922(w, nC–H), 1602(s, nC]O asymmetric), 1504(m), 1415(m,
C]C), 1388(s, nC]O symmetric), 1340(w), 1229(s, nC–O), 1177(w),
066(m), 1001(m), 803(s), 720(m), 610(w). Compound 4. yield: 24% (based
Zn1–TCMOPP units and the peripheral Zn2 sites are indicated by pink
and brown dots, respectively.
ꢁ
1
3
n
1
Dinuclear M (COO)
2
4
paddle-wheel SBUs (M ¼ Co, Ni, Cu, Zn,
ꢁ
1
on Zn). FT-IR (cm ): 2925(w, nC–H), 1654(s, nC]O asymmetric),
506(m), 1421(m, nC]C), 1333(m, nC]O symmetric), 1219(s, nC–O),
1174(m), 1104(w), 1064(m), 993(m), 848(m), 802(w), 719(w), 610(w).
Cd, and Mn) offer two distinct coordination centers for organic
linkers, such as for carboxylate- as well as for pyridyl-based organic
1
13
building blocks. Several 2D and 3D porphyrin-based frameworks
14,6b–f
with Zn (COO) SBUs have been reported in the literature.
1 (a) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae,
M. Eddaoudi and J. Kim, Nature, 2003, 423, 705–714; (b)
S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334–2375; (c) R. Matsuda, R. Kitaura, S. Kitagawa,
Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto,
2
4
Among them is the 2D coordination network composed of the tetra-
4-carboxyphenyl)porphyrin and exocyclic Zn -paddle-wheel-type
SBUs. It represents an open square-grid layer with interporphyrin
(
2
6d
ꢀ
2
T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, Nature, 2005, 436,
2
voids of approximate 11.8 ꢂ 11.8 A size. The Zn/Zn distance
38–241; (d) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak,
ꢀ
within the dinuclear cluster is 2.875 A. On the other hand, the
J. Kim, M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127–
1129; (e) B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner,
B. C. Bockrath and W. Lin, Angew. Chem., Int. Ed., 2005, 44, 72–75.
(a) C.-D. Wu and W. Lin, Angew. Chem., Int. Ed., 2007, 46, 1075–
2
bending of the aliphatic O–CH –COOH coordinating functions in 4
allows for an efficient intermolecular organization within the layered
ensembles without apparent porosity features.
2
1
078; (b) D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov,
In summary, we report here on the synthesis of a new tetra-
carboxylic acid porphyrin ligand, TCMOPP, as an attractive building
block for supramolecular self-assembly, and demonstrate its capacity
to form hydrogen bonding and coordination driven networks. There
is a considerable similarity in the crystal engineering context between
the ‘‘prototype’’ TCPP and the new TCMOPP porphyrin tetraacid
building blocks. For example, bearing four diverging –COOH
functions both species are prone to readily coordinate to exocyclic
transition metal ions and engage in the formation of coordination
chains and networks. The disposition of the carboxylic acid sites in
TCMOPP is more versatile, as each one of them can orient either up,
or down, or in a lateral direction, with respect to the central
porphyrin backbone, thus potentially enhancing the three-dimen-
sional connectivity features of TCMOPP and the variety of the
supramolecular aggregates it may form. Yet, in spite of the confor-
mational flexibility imparted to this ligand by inserting aliphatic
spacers between the aromatic core and the four diverging –COOH
groups, formation of only one-dimensional (3) and two-dimensional
E. P. Talsi, V. P. Fedin and K. Kim, Angew. Chem., Int. Ed., 2006,
45, 916–920; (c) W. Lin, J. Solid State Chem., 2005, 178, 2486–2490;
(
d) A. J. Fletcher, E. J. Cussen, D. Bradshaw, M. J. Rosseinsky and
K. M. Thomas, J. Am. Chem. Soc., 2004, 126, 9750–9759; (e)
L. Alaerts, C. E. A. Kirschhock, M. Maes, M. A. vander Veen,
V. Finsy, A. Depla, J. A. Martens, G. V. Baron, P. A. Jacobs,
J. E. M. Denayer and D. E. De Vos, Angew. Chem., Int. Ed., 2007,
4
6, 4293–4297; (f) G. F ꢂe rey, Chem. Soc. Rev., 2008, 37, 191–214; (g)
J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon and
K. Kim, Nature, 2000, 404, 982–986; (h) Q. Li, W. Zhang,
O. S. Miljanic, C.-H. Sue, Y.-L. Zhao, L. Liu, C. B. Knobler,
J. F. Stoddart and O. M. Yaghi, Science, 2009, 325, 855–859.
(a) Y. Diskin-Posner, S. Dahal and I. Goldberg, Angew. Chem., Int.
Ed., 2000, 39, 1288–1292; (b) Y. Diskin-Posner and I. Goldberg,
Chem. Commun., 1999, 1961–1962; (c) M. Shmilovits, Y. Diskin-
Posner, M. Vinodu and I. Goldberg, Cryst. Growth Des., 2003, 3,
3
4
8
55–863; (d) M. Shmilovits, Y. Diskin-Posner and I. Goldberg,
Cryst. Growth Des., 2004, 4, 633–638.
(a) Y. Diskin-Posner and I. Goldberg, New J. Chem., 2001, 25, 899–
904; (b) M. Shmilovits, M. Vinodu and I. Goldberg, J. Inclusion
Phenom. Macrocyclic Chem., 2004, 48, 165–171; (c) T. Schareina
and R. Kempe, Z. Anorg. Allg. Chem., 2000, 626, 1279–1281; (d)
Y. Diskin-Posner, G. K. Patra and I. Goldberg, Eur. J. Inorg.
Chem., 2001, 2515–2523; (e) S. George and I. Goldberg, Cryst.
Growth Des., 2006, 6, 755–762; (f) Y. Diskin-Posner, S. Dahal and
I. Goldberg, Chem. Commun., 2000, 585–586; (g) E. Deiters,
V. Bulach and M. W. Hosseini, Chem. Commun., 2005, 3906–3908;
(4) coordination polymers has been observed so far. Not surprisingly,
these compounds loose crystallinity on removal of the crystallization
solvent. Conditions required for preferential formulation of three-
dimensional framework solids with TCMOPP and related derivatives
of the flexible porphyrin tetraacids require further investigation. The
delicate interplay between molecular rigidity and flexibility is one of
the major factors to consider in targeted formulations of metal–
organic framework coordination polymers with the tetraacid ligands.
However, the effect of the additional flexibility of the TCMOPP
(
h) K. S. Suslick, P. Bhyrappa, J.-H. Chou, M. E. Kosal,
S. Nakagaki, D. W. Smithenry and S. Wilson, Acc. Chem. Res.,
2005, 38, 283–291; (i) M. E. Kosal, J.-H. Chou, S. Wilson and
K. S. Suslick, Nat. Mater., 2002, 1, 118–121.
(a) I. Goldberg, CrystEngComm, 2008, 10, 637–645; (b) I. Goldberg,
Chem.–Eur. J., 2000, 6, 3863–3870; (c) I. Goldberg, CrystEngComm,
2002, 4, 109–116.
5
This journal is ª The Royal Society of Chemistry 2010
CrystEngComm, 2010, 12, 4095–4100 | 4099