Chemistry Letters Vol.33, No.9 (2004)
1213
sized utilizing Jacobsen’s HKR method for the resolution of rac-
emic (ꢀ-naphthyl) glycidyl ether. This will promote the investi-
gation of their pharmacokinetics as individual molecular entities
and will be reported soon.
OCH3
NH
N
a
b
Cl
Cl
HO
HO
NH.HCl
NH
8
References and Notes
7
6
1
2
S. J. Fabro, Biochem. Basis Chem. Teratog., 1981, 159.
H. C. Kolb, M. S. Van Nieuwenhze, and K. B. Sharpless,
Chem. Rev., 94, 2483 (1994).
O
N
OH
N
3
a) M. Tokunaga, J. F. Larrow, F. Kakiuchi, and E. N.
Jacobsen, Science, 277, 936 (1997). b) B. D. Brandes and
E. N. Jacobsen, Tetrahedron: Asymmetry, 8, 3927 (1997).
c) M. E. Furrow, S. E. Sehaus, and E. N. Jacobsen, The
Nucleus, 2, 26 (1998).
c
H3CO
9
Scheme 3. a) SOCl2, benzene, reflux, 5 h, 74%; b) O-Anisidine,
aq. NaHCO3, 100 ꢃC, 24 h, 85%; c) 5, iPrOH, reflux, 30 h, 93%.
4
5
6
7
8
M. Bulliard, Manuf. Chem., 4, 25 (1996).
Drugs Future, 12, 31 (1987).
Drugs Future, 25, 93 (2000).
L. Ikegi, Jpn. J. Pharmacol., 1, 79 (1999).
a) S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunanga,
K. B. Hansen, A. E. Gould, M. E. Furrow, and E. N.
Jacobsen, J. Am. Chem. Soc., 124, 1307 (2002), and
references cited therein. b) M. K. Gurjar, K. Sadalapure, S.
Adhikari, B. V. N. B. S. Sarma, A. Talukdar, and M.
Chorghade, Heterocycles, 48, 1471 (1998).
O
O
N
O
OH
O
OH
OH
N
a
b
H3CO
5
10
11
Scheme 4. a) DEAD, TPP, benzene, reflux, 24 h, 87%; b) 8,
iPrOH, reflux, 30 h, 90%.
9
H. S. Bevinakatti and A. A. Banerji, J. Org. Chem., 56, 3710
(1991).
perizine derivative (8) in iPrOH under reflux condition to afford
the (S)-naftopidil (9) in 93% yield {½ꢀꢂD ¼ þ3:8ꢃ (c ¼ 1:5,
MeOH)} as a light yellow solid (mp 127 ꢃC).11
Subsequently, diol (5) was subjected to Mitsunobu invertion
with DEAD and Ph3P in bezene under reflux to afford the (R)-
1-(naphthyl) glycidyl ether (10) {½ꢀꢂD ¼ ꢄ33:2ꢃ (c ¼ 1:5,
MeOH); lit.9 ½ꢀꢂD ¼ ꢄ33:9ꢃ (c ¼ 1:55, MeOH)}. (R)-epoxide
on treatment with piperizine derivative (8) in iPrOH under reflux
gave the (R)-naftopidil (11) in 90% yield {½ꢀꢂD ¼ ꢄ3:94ꢃ
(c ¼ 1:5, MeOH)} as a light yellow solid (mp 127–128 ꢃC)
(Scheme 4).
The pharmacokinetic findings suggest that in ten patients
(9M/1F) with severe hepatic impairment or evidence for marked
changes in hepatic blood flow the dose of naftopidil may require
adjustment to the lower end of the therapeutic range and/or may
be limited to once daily.12 In conclusion, it is pertinent to men-
tion that first optically pure (S)- and (R)-naftopidil was synthe-
10 a) M. J. Klunder, S. Y. Ko, and K. B. Sharpless, J. Org.
Chem., 51, 3710 (1986). b) L. Salajar, J. L. Bermudez, C.
Ramirez, E. F. Llama, and J. V. Sinisterra, Tetrahedron:
Asymmetry, 10, 3507 (1999).
11 (S)-Naftopidil (9), mp: 127 ꢃC. ½ꢀꢂD ¼ þ3:8ꢃ (c ¼ 1:5,
MeOH). IR: 3450, 3020, 2980, 2920, 1230 cmꢄ1. H NMR
1
(CDCl3, 400 MHz): ꢂ 8.22–8.18 (dd, J ¼ 2:3, 7.1 Hz, 1H);
7.8–7.74 (dd, J ¼ 2:3, 7.1 Hz, 1H); 7.5–6.74 (m, 9H);
4.22–4.03 (m, 5H); 3.9 (s, 3H); 3.58–3.17 (m, 9H). 13C NMR
(CDCl3, 400 MHz): ꢂ 154.51; 154.33; 138.19; 134.36;
127.33; 126.26; 125.74; 125.49; 125.29; 125.05; 124.06;
121.85; 121.1; 120.36; 111.79; 104.8; 70.12; 68.38; 61.73;
57.99; 55.31; 51.26; 44.58; 42.51. EIMS: 329 (Mþ).
12 M. J. Farthing, E. M. Alstead, S. M. Abrams, G. Haug, A.
Johnston, R. Hermann, G. Niebch, P. Runs, K. H. Molz,
and P. Turner, Postgrad. Med. J., 70, 363 (1994).
Published on the web (Advance View) August 21, 2004; DOI 10.1246/cl.2004.1212