Advanced Synthesis & Catalysis
10.1002/adsc.202000314
and the mixture was stirred at room temperature for 20
hours. A brown/yellow precipitate progressively appeared.
The solid was successively washed with water and ethanol.
The crude product was dissolved in the minimum of
3
65, 360-366; e) W. Wei, P. Bao,Y. Shao, H. Yue, D.
Yang, X. Yang, X. Zhao, H. Wang, Org. Lett. 2018
,
20, 7125-7130; f) S. J. MacCarver, J. X. Qiao, J.
Carpenter, R. M. Borzirelli, M. A. Poss, M. D.
Eastgate, M. M. Miller, D. W. C. MacMillan, Angew.
Chem. Int. Ed., 2017, 56, 728-732; Angew. Chem.
CH
2 2
Cl and crystallized by addition of hexane to give
4
CzIPN as a yellow solid (1.17 g, 74% yield).
Typical procedure for the photoredox-catalyzed
radical carbonylation of silicates with amines
2
017, 129, 746-750; g) M. O. Akram, P. S. Mali, N.
In a stainless-steel autoclave was added potassium [18-
T. Patil, Org. Lett., 2017, 19, 3075-3078; h) M.
Daniel, G. Dagousset, P. Diter, P.-A. Klein, B.
Tuccio, A.-M. Goncalves, G. Masson, E. Magnier,
Angew. Chem., 2017, 56, 3997-4001 ; Angew. Chem.,
crown-6] bis(catecholato)-cyclohexylsilicate 1a (0.301
2 4
mmol, 189.7 mg), KH PO (0.370 mmol, 50.4 mg) and
4
CzIPN (1mol%, 0.003 mmol, 2.5 mg). THF was added
(
14 mL), followed by isopropylamine (0.595 mmol, 51 L)
and carbontetrachloride (0.455 mmol, 44 L). The
autoclave was flushed 3 times under CO atmosphere and
the reaction mixture was irradiated with blue LEDs (425
nm) under 80 bar CO pressure at r.t. during 48 h. The
reaction was diluted with diethyl ether (50 mL), washed
2
017, 129, 4055-4059; i) L. Candish, M. Freitag, T.
Gensch, F. Glorius, Chem. Sci., 2017, 8, 3618-3622;
j) Z. Zuo, H. Cong, W. Li, J. Choi, G. C. Fu, D. W.
C. MacMillan, J. Am. Chem. Soc. 2016, 138, 1832-
2 3
with an aqueous saturated K CO solution (20 mL x 2
times), water (20 mL x 2 times), dried over MgSO4 and
evaporated under reduced pressure. The crude
1835; k) C. C. Nawrat, C. R. Jamison, Y. Slutskyy,
product
was
purified
to
afford
N-
D. W. C. MacMillan, L. E. Overman, J. Am. Chem.
Soc. 2015, 137, 11270-11273; l) W. Guo, L.-Q. Lu,
Y. Wang, Y.-N. Wang, J.-R. Chen, W.-J. Xiao,
Angew. Chem. Int. Ed., 2015, 54, 2265-2269; Angew.
Chem., 2015, 127, 2293-2297; m) A. Gutierrez-
Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara, G. A.
Molander, ACS Catal. 2016, 6, 8004-8008.
C. L. Frye, J. Am. Chem. Soc. 1964, 86, 3170-3171.
a) E. Levernier, V. Corcé, L.-M. Rakotoarison, A.
Smith, M. Zhang, S. Ognier, M. Tatoulian, C.
Ollivier, L. Fensterbank, Org. Chem. Front., 2019, 6,
isopropylcyclohexanecarboxamide 3a (41.6 mg, 82%) as a
yellow solid.
Acknowledgements
This work was supported by the Grant-in-Aid for Scientific
Research (B) (No. 19H02722) and (C) (No. 17K05866) from the
JSPS, and Scientific Research on Innovative Areas 2707: Middle
molecular strategy (No. JP15H05850) from the MEXT. We thank
Sorbonne University, ANR-17-CE07-0018 HyperSilight (PhD
grant to E.L.). IR thanks MOST, Taiwan for generous funding.
3
4
1
378-1382; b) C. Lévêque, L. Chenneberg, V. Corcé,
C. Ollivier, L. Fensterbank, Chem. Comm. 2016, 52,
877-9880; c) L. Chenneberg, C. Lévêque, V. Corcé,
References
9
A. Baralle, J.-P. Goddard, C. Ollivier, L.
Fensterbank, Synlett 2016, 27, 731-735; d) V. Corcé,
L.-M. Chamoreau, E. Derat, J.-P. Goddard, C.
Ollivier, L. Fensterbank, Angew. Chem., Int. Ed.
1
For recent books, see: a) Visible Light Photocatalysis
in Organic Chemistry, (Eds. C. Stephenson, T. Yoon,
D. W. C. MacMillan) Wiley-VCH, Weinheim, 2018
For selected reviews, see: b) L. Marzo, S. K. Pagire,
O. Reiser, B. König, Angew. Chem. Int. Ed, 2018
.
2
015, 54, 11414-11418; Angew. Chem. 2015, 127,
,
11576-11580.
5
1
7, 10034-10072; Angew. Chem. 2018, 130, 10188-
0228; c) J. K. Matsui, S. B. Lang, D. R. Heitz, G.
5
6
M. Jouffroy, D. N. Primer, G. A. Molander, J. Am.
Chem. Soc. 2016, 138, 475-478.
a) K. D. Raynor, G. D. May, U. K. Bandarage, M. J.
Boyd, J. Org. Chem. 2018, 83, 1551-1557; b) T.
Guo, X. Liu, Y. Fang, X. Jin, Y. Yang, Y. Li, B.
Chen, M. Ouyang, Adv. Synth. Catal. 2018, 360,
A. Molander, ACS Catal. 2017, 7, 2563-2575; d) D.
Ravelli, S. Proti M. Fagnoni, Chem. Rev. 2016, 116,
9
2
850-9913; e) T. P. Yoon, Acc. Chem. Res., 2016, 49,
307-2315; f) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J.
Xiao, Acc. Chem. Res., 2016, 49, 1911-1923; g) J.-P.
Goddard, C. Ollivier, L. Fensterbank, Acc. Chem.
Res., 2016, 49, 1924-1936; h) J. Xuan, Z.-G. Zang,
W.-J. Xiao, Angew. Chem. Int. Ed., 2015, 54, 15632-
4457-4650; c) A. García-Domínguez, R. Mondal, C.
Nevado, Angew. Chem. Int. Ed. 2019, 58, 2-7;
Angew. Chem. 2019, 131, 12414-12418.
N. R. Patel, C. B. Kelly, A. P. Siegenfeld, G. A.
Molander, ACS Catal. 2017, 7, 1766-1770.
Z.-J. Wang, S. Zheng, J. K. Matsui, Z. Lu, G. A.
Molander , Chem. Sci., 2019, 10, 4389-4393.
S. T. J. Cullen, G. K. Friestad, Org. Lett., 2019, 21,
7
8
9
1
1
5641; Angew. Chem., 2015, 127, 15847-15864.
2
For selected examples, see: a) F.-D. Lu, D. Liu, L.
Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Lan, W.-J.
Xiao, J. Am. Chem. Soc., 2019, 141, 6167-6172; b)
T. Wang, D.-H. Wang, Org. Lett., 2019, 21, 3981-
8290-8294.
3
985; c) Q.-Q. Zhou, S. J. S. Düsel, L.-Q. Lu, B.
König, W.-J. Xiao, Chem. Commun., 2019, 55, 107-
10; d) I. Ghosh, J. Khamrai, A. Savateev, N.
Shlapakov, M. Antonietti, B. König, Science, 2019
0 For selected reviews by radical methods, see: a) V.
Liautard, Y. Landais, in Multicomponent Reactions,
1
(
Eds. J. Zhu, Q. Wang, M. X. Wang), Wiley, 2nd
,
5
This article is protected by copyright. All rights reserved.