Stereospecific Reduction of Methyl o-Chlorobenzoylformate at 300 g·LÀ1
3.77 (s, 4H, ArCHOH, COOCH3), 5.36 (d, 1H, ArCHOH),
7.28–7.29, 7.39–7.40 (m, 4H, Ar-H).
Technology (No. 11431921600) and Innovation Program of
Shanghai Municipal Education Commission (No. 11CXY24).
Similarly, other keto esters were obtained as follows:
(R)-HPBE: yield: 87%; 98% ee; [a]2D5: À21.4 (c 1.0,
CHCl3); lit.[21] {[a]D25: À18.1 (c 1.0, CHCl3)}; 1H NMR
(CDCl3, 400 MHz): d=1.26–1.31 (t, 3H, OCH2CH3), 1.90–
2.00 (m, 1H, ArCH2CHH), 2.08–2.17 (m, 1H, ArCH2CHH),
2.70–2.82 (m, 2H, ArCH2), 4.15–4.26 (m, 3H, OCH2CH3,
CHOH), 7.16–7.32 (m, 5H, Ar-H).
References
[1] a) K. Nakamura, R. Yamanaka, T. Matsuda, T. Harada,
Tetrahedron: Asymmetry 2003, 14, 2659–2681; b) K. Na-
kamura, T. Matsuda, Curr. Org. Chem. 2006, 10, 1217–
1246; c) S. Panke, M. Wubbolts, Curr. Opin. Chem.
Biol. 2005, 9, 188–194; d) W. Kroutil, H. Mang, K.
Edegger, K. Faber, Curr. Opin. Chem. Biol. 2004, 8,
120–126; e) J.-H. Tao, J.-H. Xu, Curr. Opin. Chem.
Biol. 2009, 13, 43–50; f) R. N. Patel, Adv. Synth. Catal.
2001, 343, 527–546; g) Y. Ni, J.-H. Xu, Biotechnol. Adv.
2011, doi:10.1016/j.biotechadv.2011.10.007.
(R)-CHBE: yield: 89%; 96% ee; [a]2D5: +22.0 (c 1.0,
CHCl3); lit.[20e] {[a]D25: +22.3 (c 1.0,CHCl3)}; 1H NMR
(CDCl3, 400 MHz): d=1.26–1.29 (t, 3H, OCH2CH3), 2.57–
2.70 (m, 2H, CH2COOEt), 3.07 (s, 1H, CHOH), 3.58–3.65
(m, 2H, ClCH2CHOH), 4.16–4.20 (q, 2H, OCH2CH3), 4.21–
4.28 (m, 1H, ClCH2CHOH).
(S)-HBE: yield: 92%; 99.9% ee; [a]2D5: +45.2 (c 1.0,
CHCl3); lit.[22] {[a]D25: +46.0 (c 1.0, CHCl3)}; 1H NMR
(CDCl3, 400 MHz): d=1.21–1.23 (d, 3H, CH3CHOH), 1.25–
[2] a) I. Kaluzna, T. Matsuda, A. Sewell, J. Stewart, J. Am.
Chem. Soc. 2004, 126, 12827–12832; b) Y. Ni, C.-X. Li,
H.-M. Ma, J. Zhang, J.-H. Xu, Appl. Microbiol. Bio-
technol. 2011, 89, 1111–1118; c) D.-M. Zhu, H. Malik,
L. Hua, Tetrahedron: Asymmetry 2006, 17, 3010–3014.
[3] A. Knietsch, T. Waschkowitz, S. Bowien, A. Henneee,
R. J. Daniel, J. Mol. Microbiol. Biotechnol. 2003, 5, 46–
56.
[4] T. Matsuda, R. Yamanaka, K. Nakamura, Tetrahedron:
Asymmetry 2009, 20, 513–557.
[5] A. Bousquet, A. Musolino, PCT Int. Appl.
WO9918110A1, 1999.
[6] K. Mitsuhashi, H. Yamamoto, Eur. Pat. Appl.
EP1316613A2, 2003.
[7] a) A. Glieder, R. Weis, W. Skranc, P. Poechlauer, I.
Dreveny, S. Majer, M. Wubbolts, H. Schwab, K.
Gruber, Angew. Chem. 2003, 115, 4963; Angew. Chem.
Int. Ed. 2003, 42, 4815- 4818; b) L. M. van Langen,
R. P. Selassa, F. van Rantwijk, R. A. Sheldon, Org. Lett.
2005, 7, 327–329.
[8] a) Z.-J. Zhang, J. Pan, J.-F. Liu, J.-H. Xu, J. Biotechnol.
2011, 152, 24–29; b) C.-S. Zhang, Z.-J. Zhang, C.-X. Li,
H.-L. Yu, G. W. Zheng, J.-H. Xu, Appl. Microbiol. Bio-
technol. DOI: 10.1007/s00253-012-3993-4.
[9] a) J.-P. Genet, S. Juge, J.-A. Laffitte, C. Pinel, S. Mal-
lart, PCT Int. Appl. WO9401390A1, 1994; b) Y. Sun,
X. Wan, J. Wang, Q. Meng, H. Zhang, L. Jiang, Z.
Zhang, Org. Lett. 2005, 7, 5425–5427.
[10] a) T. Ema, Y. Sugiyama, M. Fukumoto, H. Moriya, J.-
N. Cui, T. Sakai, M. Utaka, J. Org. Chem. 1998, 63,
4996–5000; b) T. Ema, H. Moriya, T. Kofukuda, T.
Ishida, K. Maehara, M. Utaka, T. Sakai, J. Org. Chem.
2001, 66, 8682–8684; c) T. Ema, H. Yagasaki, N. Okita,
K. Nishikawa, T. Korenaga, T. Sakai, Tetrahedron:
Asymmetry 2005, 16, 1075–1078; d) T. Ema, H. Yagasa-
ki, N. Okita, M. Takeda, T. Sakai, Tetrahedron 2006, 62,
6143–6149.
1.28
(t,
3H,
OCH2CH3),
2.37–2.50
(m,
2H,
CHOHCH2COOEt), 2.90 (s, 1H, CH3CHOH), 4.17–4.22
(m, 1H, CH3CHOH), 4.14–4.16 (q, 2H, OCH2CH3).
Homology Modeling
The initial 3D structural models of CgKR1 and Gre2p were
constructed based on the crystal structure of Sporobolomy-
ces salmonicolor carbonyl reductase (SSCR; Protein Data-
Bank code: 1Y1P)[18] using INSIGHT II (Accelrys Software
Inc). The CgKR1 active site was examined by comparison
with the corresponding X-ray template of NADPH-bound
SSCR. After that, the overall structure of CgKR1/NADPH
was obtained by merging geometrically optimized NADPH
into CgKR1 and Gre2p.
Docking
Docking was done with the Glide module in Maestro,[23]
using CBFM as the ligand and the CgKR1/NADPH com-
plex or Gre2p/NADPH complex as the receptor molecule.
The ligand and the complex were prepared respectively
using the preparation facility in the LigPrep and the Protein
Preparation Wizard. The result was used as valid inputs for
the following Grid Generation and Ligand Docking. The
grid site was generated on the basis of the reported sub-
strate-binding domain.[24] Then, docking was carried out
with extra precision, outputing the top 10 conformations.
The binding energies of the conformations were calculated
by using the Prime MM-GBSA module. To obtain a more
relaxed model, the conformation with the lowest binding
energy were further put into energy minimization by using
the GROMACS with the GROMOS 53a6 force field.[25]
Acknowledgements
[11] a) T. Ema, N. Okita, S. Ide, T. Sakai, Org. Biomol.
Chem. 2007, 5, 1175–1176; b) T. Ema, S. Ide, N. Okita,
T. Sakai, Adv. Synth. Catal. 2008, 350, 2039–2044.
[12] a) F. Hollmann, I. W. C. E. Arends, K. Buehler, Chem-
CatChem 2010, 2, 762–782; b) N. St. Clair, Y.-F. Wang,
A. L. Margolin, Angew. Chem. 2000, 112, 388–391;
Angew. Chem. Int. Ed. 2000, 39, 380–383; c) W. Stamp-
fer, B. Kosjek, C. Moitzi, W. Kroutil, K. Faber, Angew.
This work was financially supported by the National Natural
Science Foundation of China (Nos. 20902023 & 31071604),
Ministry of Science and Technology, P. R. China (Nos.
2009CB724706 & 2011CB710800), China National Special
Fund for State Key Laboratory of Bioreactor Engineering
(No. 2060204) and Shanghai Leading Academic Discipline
Project (No. B505), Shanghai Committee of Science and
Adv. Synth. Catal. 2012, 354, 1765 – 1772
ꢂ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1771