H.-J. Kim et al. / Tetrahedron Letters 44 (2003) 4335–4338
pybox-Ph(R)
4337
In conclusion, [CuL
] shows strong affinities to
amino acids in the range of sub-millimolar concentra-
−
4
−5
tion (K =10 ꢀ10 M) even in aqueous solution.
d
Enantioselectivity was moderate up to Kd(
L)/Kd(D)=2
with favorable affinities of the R-host to -amino acids.
D
pybox-Ph(R) pybox-Ph(S)
CE enables enantiomers of L
/L
to be
baseline separated using [Cu(
L
-Lys) ] as a chiral selec-
2
pybox(R)
tor. Binding of [CuL
] to amino acids was driven
by enthalpy. This leads to higher binding constants
even in aqueous solution.
Acknowledgements
Support of this work by a grant from the KRF (Grant
No. KRF-99-042-D00073) is gratefully acknowledged.
H.-J.K. thanks the Ministry of Education for the BK
pybox-Ph(R)
Figure 5. ITC titrations between [CuL
](NO3)2 and
amino acids under 10 mM HEPES buffer (pH 7.4) in aqueous
2
1 fellowship.
methanol (1:1, v/v) at 30°C. (left)
L
-Ala, (right)
D
-Ala. [H] =
0
0
.10 mM, [G] =4.0 mM (3 mL×40).
0
References
pybox-Ph(R)
(
Fig. 6). It was confirmed that L
is the first
pybox-Ph(R) pybox-Ph(S)
eluent by feeding on L
/L
=2 as ana-
1. (a) Galan, A.; Andreu, D.; Echavarren, A. M.; Prados,
P.; de Mendoza, J. J. Am. Chem. Soc. 1992, 114, 1511; (b)
Rebek, J., Jr.; Askew, B.; Nemeth, D.; Parris, K. J. Am.
Chem. Soc. 1987, 109, 2432; (c) Hong, J.-I.; Namgoong,
S. K.; Bernardi, A.; Still, W. C. J. Am. Chem. Soc. 1991,
pybox-Ph(R) 2+
lytes. ITC titration between host ([CuL
] ) and
11
guests ( -Lys) corroborated the binding analysis.
D/L
113, 5111; (d) Yoon, S. S.; Still, W. C. J. Am. Chem. Soc.
1993, 115, 823; (e) Kuroda, Y.; Kato, Y.; Higashioji, T.;
Hasegawa, J.; Kawanami, S.; Takahashi, M.; Shiraishi,
N.; Tanabe, K.; Ogoshi, H. J. Am. Chem. Soc. 1995, 117,
10950.
2
3
. (a) Hossain, A. Md.; Schneider, H.-J. J. Am. Chem. Soc.
1
1
998, 120, 11208; (b) Kuhn, R.; Erni, F. Anal. Chem.
992, 64, 2815.
. (a) Lee, J.; Schwabacher, A. W. J. Am. Chem. Soc. 1994,
16, 8382; (b) Kim, H.-J.; Lim, C. W.; Hong, J.-I. Mater.
1
Sci. Engin. C 2001, 18, 265; (c) Ait-Haddou, H.; Wiskur,
S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc.
2001, 123, 11296–11297; (d) Lee, S. B.; Hong, J.-I. Tetra-
hedron Lett. 1998, 39, 4317–4320.
4
. Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.;
von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.;
Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc.
1999, 121, 7582.
5
6
. Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am.
Chem. Soc. 2000, 122, 12517.
. (a) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K.
Organometallics 1991, 10, 500–508; (b) Nishiyama, H.;
Itoh, Y.; Matsumoto, H.; Park, S.; Itoh, K. J. Am. Chem.
Soc. 1994, 116, 2223–2224; (c) Lee, S.-H.; Yoon, J.;
Nakamura, K.; Lee, Y.-S. Org. Lett. 2000, 2, 1243–1246;
(
d) Kim, H.-J.; Kim, Y.-H.; Hong, J.-I. Tetrahedron Lett.
001, 42, 5049–5052.
7. Typical synthetic procedure for L
2
pybox-Ph(S)
Figure 6. Electropherograms of the chiral separations of
is as follows:
pybox-Ph(R) pybox-Ph(S)
L
/L
by CZE (bare fused silica 57 cm×50
To a white suspension of 340 mg (2.00 mmol) of 2,6-
pyridinedicarboxylic acid in 10 mL of dichloromethane
were added 2.2 mL of oxalyl chloride (2 M in DCM) and
catalytic DMF, which was stirred at rt for additional 8 h
to afford a clear yellow solution. All volatiles were evap-
orated under reduced pressure and dried in vacuo to
produce a white 2,6-pyridinedicarbonyl dichloride in
mm I.D., applied +23 kV, detection at 280 nm, 6 mM of
2+
[
Cu(L-Lys)2] as a chiral selector under 10 mM HEPES
buffer (pH 7.4) in aqueous methanol (1:1, v/v) at 23°C. (Red)
without a chiral selector, (blue) with a chiral selector in the
blank run buffer, (green) with a chiral selector in the selector
run buffer.