Journal of the American Chemical Society
Page 8 of 10
Wang, R. Org. Lett. 2014, 16, 1562; (d) Yin, H.; Wang, T.; Jiao, N.
Org. Lett. 2014, 16, 2302; (e) Trahanovsky, W. S.; Robbins, M. D. J.
Am. Chem. Soc. 1971, 93, 5256; aminoazidation: (f) Sequeira, F. C.
Turnpenny, B. W.; Chemler, S. R. Angew. Chem. Int. Ed. 2010, 49,
6365; (g) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 1790;
carboazidation: (h) Panchaud, P.; Renaud, P. J. Org. Chem. 2004, 69,
3205; (i) Kong, W.; Merino, E.; Nevado, C. Angew. Chem. Int. Ed.
2014, 53, 5078; (j) hydroazidation: Waser, J.; Nambu, H.; Carreira, E.
M. J. Am. Chem. Soc. 2005, 127, 8294.
1
2
3
4
5
6
7
8
REFERENCES
(1) (a) Kang, E. J.; Lee, E. Chem. Rev. 2005, 105, 4348; (b)
Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M.
Chem. Rev. 2013, 113, 4567; (c) Boivin, T. L. B. Tetrahedron, 1987,
43, 3309. (b) Tobert, J. A. Nat. Rev. Drug Discov. 2003, 2, 517; (e)
Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407.
(2) Selected reviews on catalytic enantioselective alkene
difunctionalizations: (a) Jensen, K. H.; Sigman, M. S. Org. Biomol.
Chem., 2008, 6, 4083; (b) McDonald, R. I.; Liu, G.; Stahl, S. S.
Chem. Rev. 2011, 111, 2981; (c) Kolb, H. C.; VanNieuwenhze, M. S.;
Sharpless, K. B. Chem. Rev. 1994, 94, 2483; (d) Cardona, F.; Goti, A.
Nat. Chem. 2009, 1, 269.
(3) For reviews on catalytic enantioselective alkene
halofunctionalization: (a) Castellanos A.; Fletcher, S. P. Chem.–Eur.
J. 2011, 17, 5766; (b) Snyder, S. A.; Treitler D. S.; Brucks, A. P.
Aldrichimica Acta 2011, 44, 27; (c) Denmark, S. E.; Kuester, W. E.;
Burk, M. T. Angew. Chem., Int. Ed. 2012, 51, 10938; (d) Tan, C. K.;
Ling, Z.; Yeung, Y.-Y. Synlett 2011, 1335; (e) Tan, C. K.; Yeung, Y.-
Y. Chem. Commun. 2013, 49, 7985; (f) Hennecke, U. Chem.–Asian J.
2012, 7, 456.
(4) Selected recent contributions: (a) Whitehead, D. C.; Yousefi,
R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298;
(b) Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49,
7332; (c) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J.
Am. Chem. Soc. 2010, 132, 15474; (d) Fujioka, H.; Murai, K.;
Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M. Angew.
Chem., Int. Ed. 2010, 49, 9174;; (e) Dobish M. C.; Johnston, J. N. J.
Am. Chem. Soc. 2012, 134, 6068; (f) Wang, M.; Gao, L. X.; Yue, W.;
Mai, W. P. Synth. Commun. 2004, 34, 1023; (g) Zhang, W.; Zheng,
S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc.
2010, 132, 3664; (h) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A.
D.; Martin, S. F. J. Am. Chem. Soc. 2012, 134, 11128; (i) Wilking,
M.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. J. Am.
Chem. Soc. 2013, 135, 8133; (j) Ikeuchi, K.; Ido, S.; Yoshimura, S.;
Asakawa, T.; Inai, M.; Hamashima, Y.; Kan, T. Org. Lett. 2012, 14,
6016; (k) Tungen, J. E.; Nolsøe, J. M. J.; Hansen, T. V. Org. Lett.
2012, 14, 5884; (l) Parmar, D.; Maji, M. S.; Rueping, M. Chem.–Eur.
J. 2011, 17, 5766; For related transformations: (m) Kang, S. H.; Lee,
S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748; (n) Ishihara,
K.; Sakakura, A.; Ukai, A. Nature 2007, 445, 900; (o) Nicolaou, K.
C.; Simmons, N. L.; Ying, Y.; Heretsch, P. M.; Chen, J. S. J. Am.
Chem. Soc. 2011, 133, 8134; Cai, Y.; (p) Liu, X.; Hui, Y.; Jiang, J.;
Wang, W.; Chen, W.; Lin, L.; Feng, X. Angew. Chem., Int. Ed. 2010,
49, 6160; (q) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256;
Chen, Z.-M.; Zhang, Q.-W.; Chen, Z.-H.; Li, H.; Tu, Y.-Q.; Zhang,
F.-M.; Tan, J.-M. J. Am. Chem. Soc. 2011, 133, 8818; (r) Rauniyar,
V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334,
1681; (s) Huang, D.; Liu, X.; Li, L.; Cai, Y.; Liu, W.; Shi, Y. J. Am.
Chem. Soc. 2013, 135, 8101; (t) Lozano, O.; Blessley, G.; Martinez
del Campo, T.; Thompson, A. L.; Giuffredi, G. T.; Bettati, M.;
Walker, M.; Borman, R.; Gouverneur. V. Angew. Chem., Int. Ed.
2011, 50, 8105; (u) Chen, F.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem.
Soc. 2013, 135, 1232.
(9) (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96,
835; (b) Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
(10) (a) Tingoli, M.; Tiecco, M.; Chianelli, D.; Balducci, R.;
Temperini, A. J. Org. Chem. 1991, 56, 6809; (b) Pedersen, C. M.;
Marinescu, L. G.; Bols, M. Org. Biomol. Chem. 2005, 3, 816.
(11) (a) Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen,
A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc.
1996, 118, 5192; (b) Sharma, A.; Hartwig, J. F. Nature 2015, 517,
600; (c) Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246. (d) Deng,
Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013,
135, 5356.
(12) The reaction of a 1,1-dialkyl substituted alkene derivative
under standard conditions gave low yield of the oxyazidation product
in essentially racemic form. This suggests the catalyst is much less
effective in distinguishing between two alkyl groups than an alkyl
group and an aryl group in the tertiary radical intermediates.
(13) (a) The different diastereoselectivities observed for
oxytrifluoromethylation (favors Ph/Me “syn”) and oxyazidation
(favors Ph/Me “anti”) reactions might be attributable to the difference
between the size of a trifluoromethyl group (CF3 > Me > H) and that
of an azido group (Me > N3 > H). (b) Some additional evidence
including the result from radical clock experiments was also found
consistent with the mechanism proposed in Scheme 2. See supporting
information for detail.
(14) For alkene hydroxysulfonylation (racemic): (a) Lu, Q.; Zhang,
J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem. Int. Ed.
2013, 52, 7156; (b) Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.;
Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191; (c) Xi, C.; Lai, C.;
Chen, C.; Wang, R. Synlett 2004, 1595; (d) Taniguchi, T.; Idota, A.;
Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151.
(15) (a) Eto, H.; Kaneko, Y.; Takeda, S.; Tokizawa, M.; Sato, S.;
Yoshida, K.; Namiki, S.; Ogawa, M.; Maebashi, K.; Ishida, K.;
Matsumoto, M.; Asaoka, T. Chem. Pharm. Bull. 2001, 49, 173; (b)
Gala, D.; DiBenedetto, D. J.; Clark, J. E; Murphy, B. L.; Schumacher,
D. P.; Steinman, M. Tetrahedron Lett. 1996, 37, 611.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) (a) Robin, S.; Huet, F.; Fauve, A.; Veschambre, H.
Tetrahedron: Asymmetry 1993, 4, 239; (b) Kozikowski, A. P.;
Mugrage, B. B.; Li, C. S.; Felder, L. Tetrahedron Lett. 1986, 27,
4817; (c) Tanikaga, R.; Hosoya, K.; Kaji, A. J. Chem. Soc. Perkin
Trans. 1 1987, 1799.
(17) Selected examples: (a) Wan, X.; Meng, Q.; Zhang, H.; Sun,
Y.; Fan, W.; Zhang, Z. Org. Lett. 2007, 9, 26. (b) Cho, B. T.; Kim, D.
J. Tetrahedron: Asymmetry 2001, 12, 2043; (c) Gotor, V.; Rebolledo,
F.; Liz, R. Tetrahedron: Asymmetry 2001, 12, 513.
(18) Muñoz-Molina, J. M.; Belderraín, T. R.; Pérez, P. J. Inorg.
Chem. 2010, 49, 642.
(5) Representative examples of catalytic enantioselective
lactonization with other electrophiles: (a) Denmark, S. E.; Kalyani,
D.; Collins, W. R. J. Am. Chem. Soc. 2010, 132, 15752; (b) Niu, W.;
Yeung, Y.-Y. Org. Lett. 2015, 17, 1660; (c) Takenaka, K.; Mohanta,
S. C.; Patil, M. L.; Rao, C. L.; Takizawa, S.; Suzuki, T.; Sasai, H.
Org. Lett. 2010, 12, 3480.
(6) (a) Zhu, R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2013, 52,
12655; (b) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134,
12462; (c) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed.
2011, 50, 9120.
(7) (a) For a Pd-catalyzed enantioselective oxyazidation reaction:
Jensen, K. H.; Pathak, T. P.; Zhang, Y.; Sigman, M. S. J. Am. Chem.
Soc. 2009, 131, 17074; (b) For a Cu-mediated diastereoselective
oxyazidation of alkenes: Sequeira, F. C.; Chemler, S. R. Org. Lett.
2012, 14, 4482.
(8) Selected examples of alkene azidofunctionalization (racemic):
oxyazidation: (a) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.;
Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059; (b) Zhang, B.; Studer, A.
Org. Lett. 2013, 15, 4548; (c) Zhu, L.; Yu, H.; Xu, Z.; Jiang, X.;
(19) For transition metal-catalyzed oxyarylation (racemic): (a)
Wolfe, J. P.; Rosi, M. A. J. Am. Chem. Soc. 2004, 126, 1620; (b)
Melhado, A. D.; Brenzovich, W. E.; Lackner, A. D.; Toste, F. D. J.
Am. Chem. Soc. 2010, 132, 8885; (c) Zhang, G.; Cui, L.; Wang, Y.;
Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474; (d) Sahoo, B.; Hopkin-
son, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505 (e) Guo,
W.; Cheng, H.-G.; Chen, L.-Y.; Xuan, J.; Feng, Z.-J.; Chen, J.-R.; Lu,
L.-Q.; Xiao, W.-J. Adv. Synth. Catal. 2014, 356, 2787; (f) Ball, L. T.;
Green, M.; Lloyd-Jones, G. C.; Russell, C. A. Org. Lett. 2010, 12,
4724; (g) Satterfield, A. D.; Kubota, A.; Sanford, M. S. Org. Lett.
2011, 13, 1076; (h) Coy B., E. D.; Jovanovic, L.; Sefkow, M. Org.
Lett. 2010, 12, 1976; (i) Matsura, B. S.; Condie, A. G.; Buff, R. C.;
Karahalis, G. J.; Stephenson, C. R. J. Org. Lett. 2011, 13, 6320; (j)
Zhu, R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2012, 51, 1926; For a
transition metal-free oxyarylation: (k) Hartmann, M.; Li, Y.; Studer,
A. J. Am. Chem. Soc. 2012, 134, 16516.
(20) For transition metal-catalyzed enantioselective oxyaryla-
tion: (a) Pathak, T. P.; Gligorich, K. M.; Welm, B. E.; Sigman, M. S.
8
ACS Paragon Plus Environment