Paper
RSC Advances
biothiols. This sensor was designed based on the theoretical 14 F. Kong, R. Liu, R. Chu, X. Wang, K. Xu and B. Tang, Chem.
calculations of the stability constants of the complex between Commun., 2013, 49, 9176–9178.
the Cu2+ ions and uorescent ligands. The obtained results are 15 J. Shi, Y. Wang, X. Tang, W. Liu, H. Jiang, W. Dou and W. Liu,
completely consistent with the experimental results. The BDC– Dyes Pigm., 2014, 100, 255–260.
Cu2+ complex can be used for the detection of biothiols in the 16 S. Ji, H. Guo, X. Yuan, X. Li, H. Ding, P. Gao, C. Zhao, W. Wu,
presence of non-thiol containing amino acids. The limit of W. Wu and J. Zhao, Org. Lett., 2010, 12, 2876–2879.
detection and the limit of quantitation of the proposed che- 17 X.-D. Jiang, J. Zhang, X. Shao and W. Zhao, Org. Biomol.
mosensor for Cys are 0.3 and 1.1 mM, respectively. This result Chem., 2012, 10, 1966–1968.
opens a new research direction toward the utilization of the 18 M. Wei, P. Yin, Y. Shen, L. Zhang, J. Deng, S. Xue, H. Li,
complexes between metal ions and uorescent ligands for the
detection of biothiols based on the theoretical calculations of
the stability constants.
B. Guo, Y. Zhang and S. Yao, Chem. Commun., 2013, 49,
4640–4642.
19 Y.-S. Guan, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and
Q.-Z. Yang, RSC Adv., 2014, 4, 8360–8364.
In this study, the theoretical calculations of the excited states
were also used to elucidate the changes in the uorescence 20 M. H. Lee, J. H. Han, P.-S. Kwon, S. Bhuniya, J. Y. Kim,
properties of compounds. The quenching of the uorescence of
the BDC–Cu2+ complex occurred because the internal conver-
J. L. Sessler, C. Kang and J. S. Kim, J. Am. Chem. Soc., 2012,
134, 1316–1322.
sion processes dominated the uorescence process due to the 21 Y. Bao, Q. Li, B. Liu, F. Du, J. Tian, H. Wang, Y. Wang and
small energy gap between adjacent excited states, from the R. Bai, Chem. Commun., 2012, 48, 118–120.
excited states Dn (n > 2) to the excited state D2. Moreover, the D2 22 D. T. Nhan, N. K. Hien, H. Van Duc, N. T. A. Nhung,
and D1 states are dark doublet states because of the lack of
overlapping between MOs during each transition.
N. T. Trung, D. U. Van, W. S. Shin, J. S. Kim and
D. T. Quang, Dyes Pigm., 2016, 131, 301–306.
23 D. Devarajan, P. Lian, S. C. Brooks, J. M. Parks and
J. C. Smith, ACS Earth Space Chem., 2018, 2, 1168–1178.
24 O. Gutten and L. Rulisek, Inorg. Chem., 2013, 52, 10347–
10355.
Conflicts of interest
There are no conicts to declare.
25 S. Vukovic, B. P. Hay and V. S. Bryantsev, Inorg. Chem., 2015,
54, 3995–4001.
Acknowledgements
´
´
26 R. Flores, L. I. Reyes-Garcıa, N. Rodrıguez-Laguna and
´
R. Gomez-Balderas, Theor. Chem. Acc., 2018, 137, 125.
This research was funded by the Vietnam National Foundation
for Science and Technology Development (NAFOSTED) under 27 A. T. Afaneh, G. Schreckenbach and F. Wang, J. Phys. Chem.
grant number 104.06-2016.32 (Nguyen Khoa Hien).
B, 2014, 118, 11271–11283.
28 J.-S. Wu, F. Wang, W.-M. Liu, P.-F. Wang, S.-K. Wu, X. Wu
and X.-H. Zhang, Sens. Actuators, B, 2007, 125, 447–452.
29 Y. H. Lee, M. H. Lee, J. F. Zhang and J. S. Kim, J. Org. Chem.,
2010, 75, 7159–7165.
References
1 P. Ghezzi, Int. J. Gen. Med., 2011, 4, 105.
2 S. Hasanbasic, A. Jahic, E. Karahmet, A. Sejranic and 30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
B. Prnjavorac, Mater. Soc. Med., 2016, 28, 235.
3 C. B. Pocernich and D. A. Buttereld, Biochim. Biophys. Acta,
Mol. Basis Dis., 2012, 1822, 625–630.
4 S. Shahrokhian, Anal. Chem., 2001, 73, 5972–5978.
5 P. Ganguly and S. F. Alam, Nutr. J., 2015, 14, 1–10.
6 D. Faeh, A. Chiolero and F. Paccaud, Swiss Med. Wkly., 2006,
136, 745–756.
7 N. Ballatori, S. M. Krance, S. Notenboom, S. Shi, K. Tieu and
C. L. Hammond, Biol. Chem., 2009, 390, 191–214.
8 D. T. Quang and J. S. Kim, Chem. Rev., 2010, 110, 6280–6301.
9 N. K. Hien, P. T. Quy, N. T. Trung, V. Vien, D. Van Khanh,
N. T. A. Nhung and D. T. Quang, Chem. Lett., 2014, 43,
1034–1036.
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, G. Z. J. Bloino,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma,
V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman,
J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09,
Revision C.01, Gaussian, Inc., Wallingford CT, 2009.
10 X. Chen, Y. Zhou, X. Peng and J. Yoon, Chem. Soc. Rev., 2010,
39, 2120–2135.
´
´˜
11 C. Yin, F. Huo, J. Zhang, R. Martınez-Manez, Y. Yang, H. Lv
and S. Li, Chem. Soc. Rev., 2013, 42, 6032–6059.
12 X. Zhang, Y. Yan, Y. Hang, J. Wang, J. Hua and H. Tian,
Chem. Commun., 2017, 53, 5760–5763.
31 T. Weymuth, E. P. Couzijn, P. Chen and M. Reiher, J. Chem.
Theor. Comput., 2014, 10, 3092–3103.
13 Y.-Q. Sun, M. Chen, J. Liu, X. Lv, J.-f. Li and W. Guo, Chem.
Commun., 2011, 47, 11029–11031.
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 36265–36274 | 36273