Y. Zhuang et al. / Tetrahedron 67 (2011) 7085e7089
7089
by semipreparative HPLC (10% MeOH/H2O) to yield 5 (3 mg, tR
13 min) and 6 (2 mg, tR 11 min).
established as
L
-configuration. Due to the bad discrimination
between L/D-Ser, they were determined by amino acids analysis on
a chiral Crownpak CR(þ) HPLC column.11,12 Compound 3 (1 mg) was
dissolved in 1 mL of 6 N HCl and heated in a sealed tube at 110 ꢂC for
12 h. The hydrolyzate was dried and reconstituted in 1 mL of H2O.
The hydrolyzate was then analyzed by chiral HPLC over Crownpak
CR(þ) column for serine, proline (flow rate 0.5 mL/min; solvent,
aqueous HClO4 (pH 1.5); detection, 201 nm; temperature 0 ꢂC),
respectively. The retention times of serine in hydrolyzates of 3 and
3.5. Characteristics of compounds
3.5.1. Versicoloritide A (1). White amorphous powder; ½a D25
ꢀ90.7
ꢃ
(c 1.7, MeOH); UV (MeOH) lmax (log 3) 216 (4.49), 258 (4.05), 265
(3.97) nm; IR (KBr) nmax 3297, 3064, 3027, 2978, 2963, 1640, 1506,
1449, 1345, 1320, 1189, 1160 cmꢀ1; 1H and 13C NMR data, see Table
1; HRESI-MS m/z 560.2869 [MþH]þ (calcd for C31H37N5O5,
560.2873).
the authentic L/D-Ser and L-Pro were tR 6.2 min, tR 6.2/5.2 min, and
tR 5.2 min, respectively. Co-injection of the authentic sample with
the hydrolyzate confirmed that the serine residue in compound 3
3.5.2. Versicoloritide B (2). White amorphous powder; ½a D25
ꢃ
ꢀ43.6
was L-Ser (Fig. S28).
(c 0.1, MeOH); UV (MeOH) lmax (log 3) 216 (4.49), 258 (4.05), 265
(3.97) nm; IR (KBr) nmax 3276, 2923, 1680, 1647, 1555, 1543, 1522,
Acknowledgements
1451, 1344, 748, 702 cmꢀ1 1H and 13C NMR data, see Table 1;
;
HRESI-MS m/z 546.2703 [MþH]þ (calcd for C30H35N5O5, 546.2716).
This work was supported by grants from National Basic Research
Program of China (No. 2010CB833800), from the National Natural
Science Foundation of China (Nos. 30973680 and 30670219), and
from PCSIRT (No. IRT0944). The working strain LCJ-5-4 was iden-
tified by Prof. C.X. Fang, China Center for Type Culture Collection.
3.5.3. Versicoloritide C (3). White amorphous powder; ½a D25
ꢀ118
ꢃ
(c 0.2, MeOH); UV (MeOH) lmax (log 3) 216 (4.49), 258 (4.02), 265
(3.97) nm; IR (KBr) nmax 3303, 1647, 1555, 1537, 1524, 1450, 1342,
758, 702 cmꢀ1 1H and 13C NMR data, see Table 1; HRESI-MS m/z
;
576.2797 [MþH]þ (calcd for C31H37N5O6, 576.2822).
Supplementary data
3.5.4. Tetraorcinol A (4). Purple oil; UV (MeOH) lmax (log 3) 223
(4.52), 280 (3.79) nm; IR (KBr) nmax 3417, 2923, 1614, 1585, 1463,
This data include bioassay protocols used, the NMR spectra of
compounds 1e6, HPLC profiles of acidic hydrolyzates of 1e3. Sup-
plementary data associated with this article can be found online
129, 1233, 1159, 1137, 1059, 1036, 971, 840, 782, 677, 662, 634,
596 cmꢀ1 1H and 13C NMR data, see Table 2; HRESI-MS m/z
;
442.1785 [MþH]þ (calcd for C28H26O5, 442.1780).
References and notes
3.5.5. Versicolactone A (5). White oil; ½a D25
ꢀ31.5 (c 0.02, EtOH); UV
ꢃ
ꢀ
(MeOH) lmax (log 3) 272 (3.72) nm; IR (KBr) nmax 1777, 1748, 1683,
1. John, W. B.; Brent, R. C.; Hu, W. P.; Murray, H. G. M.; Peter, T. N.; Michele, R. P.
Nat. Prod. Rep. 2009, 26, 170e224.
2. Mayer, A. M. S.; Glaser, K. B.; Cuevas, C.; Jacobs, R. S.; Kem, W.; Little, R. D.;
McIntosh, J. M.; Newman, D. J.; Potts, B. C.; Shuster, D. E. Trends Pharmacol. Sci.
2010, 31, 255e265.
1652, 1558, 1537, 1518, 1508, 1125, 1061, 680, 646 cmꢀ1; 1H and 13
C
NMR data, see Table 2; HRESI-MS m/z 193.0486 [MþNa]þ (calcd for
C8H10O4Na, 193.0477).
3. Anahit, P.; Staffan, K.; Suhelen, E. Mar. Drugs 2010, 8, 438e459.
4. Zhuang, Y. B.; Teng, X. C.; Wang, Y.; Liu, P. P.; Li, G. Q.; Zhu, W. M. Org. Lett. 2011,
13, 1130e1133.
5. Butnick, N. Z.; Yager, L. N.; Hermann, T. E. J. Bacteriol. 1984, 160, 533e540.
6. Bunyapaiboonsri, T. Chem. Pharm. Bull. 2007, 55, 304e307.
7. Liu, J. F.; Ye, P. J. Org. Chem. 2005, 70, 6339e6345.
8. Schmidt, G.; Grube, A.; Kock, M. Eur. J. Org. Chem. 2007, 4103e4110.
9. Siemion, I. Z.; Wieland, T.; Pook, K. H. Angew. Chem., Int. Ed. Engl. 1975, 14,
702e703.
3.5.6. Versicolactone B (6). White oil; ½a D25
þ19.8 (c 0.05, EtOH); UV
ꢃ
(MeOH) lmax (log 3) 272 (3.72) nm; IR (KBr) nmax 1754, 1699, 1682,
1650, 1556, 1540, 1204, 1131, 1028, 721, 668 cmꢀ1; 1H and 13C NMR
data, see Table 2; HRESI-MS m/z 193.0468 [MþNa]þ (calcd for
C8H10O4Na, 193.0477).
10. Marfey, P. Carlsberg Res. Commun. 1984, 49, 591e596.
11. Wang, W. L.; Lu, Z. Y.; Tao, H. W.; Zhu, T. J.; Fang, Y. C.; Gu, Q. Q.; Zhu, W. M. J.
Nat. Prod. 2007, 70, 1558e1564.
3.6. Determination of absolute configurations of amino acids
by Marfey’s method10
12. Gunasekera, S. P.; Ross, C.; Paul, V. J.; Matthew, S.; Luesch, H. J. Nat. Prod. 2008,
71, 887e890.
Compounds 1e3 (each 1 mg) were hydrolyzed in HCl (6 N; 1 mL)
13. Nilewski, C.; Geisser, R. W.; Ebert, M. O.; Carreira, E. M. J. Am. Chem. Soc. 2009,
131, 15866e15876.
for 20 h at 110 ꢂC. The solution was then evaporated to dryness and
redissolved in H2O (250
in acetone was added to an aliquot (50
solution. After addition of NaHCO3 solution (1 N; 20
was incubated at 45 ꢂC for 1 h. The reaction was then quenched by
addition of HCl (2 N, 10 L). Analyses of the FDAA-derivatized hy-
drolyzates of compounds 1e3 and standard FDAA-derivatized
amino acids were carried out by HPLC (Waters 600E; solvents:
A. waterþ0.2% TFA, B. MeCN; linear gradient: 0e5 min, 15% B;
5e50 min, 15e45% B; 50e55 min, 45% B; temperature, 30 ꢂC; flow
rate, 1 mL/min; UV detection at lmax 340 nm). Retention times
m
L). A 1% (w/v) solution (100
L) of the acid hydrolyzate
L) the mixture
mL) of L-FDAA
14. Jarvis, B. B.; Wang, S.; Ammon, H. L. J. Nat. Prod. 1996, 59, 254e261.
15. Jarvis, B. B.; Stahly, G. P.; Pavanasasivam, G.; Midiwo, J. O.; DeSilva, T.; Holm-
lund, C. E.; Mazzola, E. P.; Geoghegan, R. F., Jr. J. Org. Chem. 1982, 47, 1117e1124.
16. Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2002, 4, 4447e4450.
17. Becker, H.; Soler, M. A.; Sharpless, K. B. Tetrahedron 1995, 51, 1345e1376.
18. Tulshian, D. B.; Fraser-Reid, B. J. Am. Chem. Soc. 1981, 103, 474e475.
19. Jarvis, B. B.; Pavanasasivam, G.; Holmlund, C. E.; DeSilva, T.; Stahly, G. P.;
Mazzola, E. P. J. Am. Chem. Soc. 1981, 103, 472e474.
20. Ma, J. P.; Yang, X. L.; Liu, Z. L. Phytochemistry 2004, 65, 1137e1143.
21. Peng, K.; Chen, F. X.; She, X. G.; Yang, C. H.; Cui, Y. X.; Pan, X. F. Tetrahedron Lett.
2005, 46, 1217e1220.
22. Xu, D. Q.; Sharpless, K. B. Tetrahedron Lett. 1994, 35, 4685e4688.
23. Shing, T. K. M.; Tai, V. W. F.; Tsui, H. C. J. Chem. Soc., Chem. Commun. 1994,
1293e1294.
m
m
m
(min) of the amino acids derivatives were as follows:
29.6/34.4 min; -Pro, tR 30.6/32.3 min; -Phe, tR 40.8/51.2 min.
The derivatized hydrolyzates of 1e3 showed peaks designated as
-Ala, -Pro, and -Phe. All amino acids of these cyclopeptides were
L/D-Ala, tR
24. Mosmann, T. Immunol. Methods 1983, 65, 55e63.
25. Zaika, L. L. J. Food Saf. 1988, 9, 97e118.
26. Chen, Y.; Wong, M.; Rosen, R. T.; Ho, C. T. J. Agric. Food Chem. 1999, 47,
2226e2228.
L
/D
L/D
L
L
L