LETTER
Diastereoselective Titanocene-Catalyzed Oxidative Cyclization of Bishomoallylic Alcohols
1481
(8) a) Fukuyama, T.; Vranesic, B.; Negri, D. P.; Kishi, Y.
by significant acidity so that a base such as pyridine or
2,6-lutidine is necessary in order to prevent the formation
of acid catalyzed (non oxidative) cyclohydration by-prod-
ucts.
Tetrahedron Lett. 1978, 2741. b) Hashimoto, M.; Kan, T.;
Yanagiya, M.; Shirahama, H.; Matsumoto, T. Tetrahedron
Lett. 1987, 28, 5665. c) Hartung, J.; Schmidt, P. Synlett 2000,
3, 367.
(9) Figadere, B. Acc. Chem. Res. 1995, 28, 359.
(10) Lord, M. D.; Negri, J. T.; Paquette, L. A. J. Org. Chem. 1995,
60, 191.
(11) Compound 1a is oxidatively cyclized to 3a and 4a by the
system VO(acac)2/TBHP8c (10%mol) in CH2Cl2 at r.t.
furnishing 4a within 48h in 19% yield and without
diastereoselection.
(12) Coordinating and polar solvents such as: THF, DMF, CH3CN,
diethyl ether were not investigated. We had previously
observed in the epoxidation of allylic alcohols using
titanocenes/TBHP system3 (unpublished results) that these
solvents led to a small conversion to epoxyalcohols (in some
cases they prevented the reaction to occur). A strong
coordination of the solvent to the catalytic complex might be
responsible of the suppressed reactivity.
Then, Re2O7 is economically less convenient than
Cp2TiCl2 and in general has to be used in more than
stoichiometric amounts. Furthermore, methyl trioxorheni-
um/H2O2 system5f has proven to be particular efficient for
the conversion of suitable hydroxy alkenes into tetrahy-
drofuran derivatives; however, no diastereoselectivity
was found in the formation of cis/trans isomers.
Acknowledgement
MURST and CNR are gratefully acknowledged for financial sup-
port.
(13) Typical experimental procedure: To a solution of dry
CH2Cl2 under argon atmosphere at r.t. are sequentially added:
2 (5%mol), activated 4Å ms (400mg) and the bishomoallylic
alcohol 1 (1 mmol). After stirring for 10 min, TBHP (1.5
mmol, 5.5 M solution in decane) is added and the reaction
mixture refluxed. The reaction was monitored by TLC. At the
end of the reaction the solvent is concentrated under vacuum
and the crude mixture is purified by silica gel column
chromatography by elution with light petroleum/diethyl ether
mixtures. The spectroscopic data of compounds 3 and 4
matched with ones reported in the literature: Michael, J. P.;
Nkwelo, M. M. Tetrahedron 1990, 46, 2549; Mischitz, M.;
Hackinger, A.; Francesconi, I.; Faber, K. Tetrahedron 1994,
50, 8661; Méou, A.; Bouanah, A.; Archelas, A.; Zhang, X. M.;
Guglielmetti, R.; Furstoss, R. Synthesis 1990, 752; Méou, A.;
Bouanah, A.; Archelas, A.; Zhang, X. M.; Guglielmetti, R.;
Furstoss, R. Synthesis 1990, 681; ref. 8c and 7.
References and Notes
(1) a) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355. b) Keith
Hollis, T.; Robinson, N. P.; Bonich, B. Tetrahedron Lett.
1992, 33, 6423. c) Collins, S.; Kuntz, B. A.; Hong, Y. J. Org.
Chem. 1989, 54, 4154.
(2) a) Chong, B. H.; Grubbs, R. H.; Brubaker, C. H. J.
Organomet. Chem. 1985, 280, 365. b) Colletti, R. L.;
Halterman, R. L. Tetrahedron Lett. 1992, 33, 1005.
(3) Della Sala, G.; Giordano, L.; Lattanzi, A.; Proto, A.; Scettri,
A. Tetrahedron 2000, 56, 3567.
(4) Della Sala, G.; Lattanzi, A.; Severino, T.; Scettri, A. J. Mol.
Catal. 2001, 170, 219.
(5) a) Tang, S.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5299.
b) Tang, S.; Kennedy, R. M. Tetrahedron Lett. 1992, 33, 5303.
c) Towne, T. B.; McDonald, F. E. J. Org. Chem. 1995, 60,
5750. d) Towne, T. B.; McDonald, F. E. J. Am. Chem. Soc.
1997, 119, 6022. e) Morimoto, Y.; Iwai, T. J. Am. Chem. Soc.
1998, 120, 1633. f) Tan, H.; Espenson, J. H. J. Mol. Catal.
2000, 152, 83.
(14) Colletti, S. L.; Halterman, R. L. J. Organomet. Chem. 1993,
455, 99.
(6) Wadell, T. G.; Carter, A. D.; Miller, T. J. J. Org. Chem. 1992,
57, 381.
Article Identifier:
(7) Michael, J. P.; Ting, P. C.; Bartlett, P.A. J. Org. Chem. 1985,
50, 2416.
1437-2096,E;2001,0,09,1479,1481,ftx,en;D12001ST.pdf
Synlett 2001, No. 9, 1479–1481 ISSN 0936-5214 © Thieme Stuttgart · New York