April 2011
527
Reagents and Conditions: (a) TsOH·H2O, tBuOH, H2O, 80 °C; (b) HCl, THF, 0 °C; (c) CF3SO3H, CH2Cl2, ꢁ20 °C.
Chart 3
9) Johnson M. R., Nakata T., Kishi Y., Tetrahedron Lett., 20, 4343—4346
(1979).
10) Nagaoka H., Kishi Y., Tetrahedron, 37, 3873—3888 (1981).
11) Mico A. D., Margarita R., Parlanti L., Vescovi A., Piancatelli G., J.
Org. Chem., 62, 6974—6977 (1997).
12) Lindgren B. O., Nilsson T., Acta Chem. Scand., 27, 888—890 (1973).
13) Kraus G. A., Taschner M., J. Org. Chem., 45, 1175—1176 (1980).
14) Kraus G. A., Roth B., J. Org. Chem., 45, 4825—4830 (1980).
15) Bal B. S., Childers W. E. Jr., Pinnick H. W., Tetrahedron, 37, 2091—
2096 (1981).
Next, we carried out preliminary experiments for removal
of the MOM groups in 27. However, surprisingly, treatment
t
of 27 with a catalytic amount of TsOH·H2O in BuOH/H2O
at 80 °C or HCl in THF at 0 °C produced a mixture of two
fragment lactones 28 and 29. On the other hand, upon treat-
ment of 27 with CF3SO3H in CH2Cl2 at ꢁ20 °C, symmetric
16-membered diolide 30 containing two dioxane rings was
formed.
In summary, we succeeded in the stereoselective synthesis
of the diolide congener 27 of lepranthin (1) based on regio-
and stereospecific epoxide-opening reactions. Namely, reduc-
tive cleavage of the epoxide 6 with HCOOH and Pd2(dba)3·
CHCl3 was used for construction of the C7 asymmetric cen-
ter. On the other hand, four contiguous asymmetric carbon
centers at the C2—C5 positions were constructed by the
epoxide-opening reactions with the Lipshutz reagent (10→11
and/or 16→17). The subsequent key macrolactonization was
successfully performed using the Yamaguchi reagent. Further
studies toward the total synthesis of lepranthin (1) from the
crucial intermediate 27 is now in progress in our laboratory.
16) Tanemura K., Suzuki T., Horaguchi T., J. Chem. Soc. Perkin Trans. 1,
2997—2998 (1992).
17) Inanaga J., Hirata K., Saeki H., Katsuki T., Yamaguchi M., Bull. Chem.
Soc. Jpn., 52, 1989—1993 (1979).
18) For data of 24: [a]D27 ꢁ25.11 (cꢂ1.02, CHCl3); HR-ESI-MS m/z
1001.5831 (Calcd for C49H90O17Na: 1001.5845); IR (ATR) 1731 cmꢁ1
;
1H-NMR (400 MHz, CDCl3) d: 7.36—7.29 (5H, m), 5.25—5.19 (1H,
br m), 5.12 (2H, s), 4.66—4.54 (12H, m), 4.04 (1H, tt, Jꢂ9.6, 2.8 Hz),
3.86—3.81 (1H, m), 3.80—3.74 (2H, br m), 3.73—3.65 (3H, m), 3.38
(6H, s), 3.36 (3H, s), 3.35 (3H, s), 3.34 (3H, s), 3.32 (3H, s), 2.96 (1H,
qd, Jꢂ6.8, 6.0 Hz), 2.87 (1H, qd, Jꢂ7.2, 5.6 Hz), 2.17—2.11 (2H, m),
1.94—1.53 (7H, m), 1.41—1.33 (1H, m), 1.22—1.18 (12H, m), 0.89
(3H, d, Jꢂ7.2 Hz), 0.89 (9H, s), 0.83 (3H, d, Jꢂ7.2 Hz), 0.09 (3H, s),
0.07 (3H, s); 13C-NMR (100 MHz, CDCl3) d: 174.03 (C), 173.66 (C),
135.88 (C), 128.46 (2C, CH), 128.22 (2C, CH), 128.14 (CH), 98.35
(CH2), 98.13 (CH2), 98.87 (CH2), 95.81 (CH2), 95.73 (CH2), 95.51
(CH2), 83.44 (CH), 83.34 (CH), 74.97 (CH), 74.92 (CH), 71.69 (CH),
70.15 (CH), 69.72 (CH), 67.15 (CH), 66.21 (CH2), 56.04 (2C, CH3),
55.88 (CH3), 55.74 (CH3), 55.40 (CH3), 55.22 (CH3), 45.04 (CH2),
43.07 (2C, CH), 41.65 (CH2), 38.86 (CH2), 38.01 (CH), 37.98 (CH),
35.52 (CH2), 25.92 (3C, CH3), 21.83 (CH3), 21.20 (CH3), 17.99 (C),
12.27 (2C, CH3), 10.94 (CH3), 10.74 (CH3), ꢁ3.80 (CH3), ꢁ4.62
(CH3).
Acknowledgement Financial support from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (a Grant-in-Aid for Scien-
tific Research (B) (No. 19350027) and Advanced Promotion Research Pro-
gram for Education of Graduate School) is gratefully acknowledged.
References and Notes
1) Omura S., “Macrolide Antibiotics,” Academic Press, 2002.
2) Zopf W., Liebigs Ann. Chem., 336, 46—85 (1904).
3) Polborn K., Steglich W., Connolly J. D., Huneck S., Z. Naturforsch. B:
Chem. Sci., 50, 1111—1114 (1995).
19) For data of 27: [a]D30 ꢁ40.87 (cꢂ1.01, CHCl3); HR-ESI-MS m/z
779.4412 (Calcd for C36H68O16Na: 779.4405); IR (ATR) 1728 cmꢁ1
;
4) Garbaccio R. M., Stachel S. J., Baeschlin D. K., Danishefsky S. J., J.
Am. Chem. Soc., 123, 10903—10908 (2001).
5) Katsuki T., Sharpless K. B., J. Am. Chem. Soc., 102, 5974—5976
(1980).
6) Dess D. B., Martin J. C., J. Org. Chem., 48, 4155—4156 (1983).
7) Oshima M., Yamazaki H., Shimizu I., Nisar M., Tsuji J., J. Am. Chem.
Soc., 111, 6280—6287 (1989).
8) Lipshutz B. H., Kozlowski J., Wilhelm R. S., J. Am. Chem. Soc., 104,
2305—2307 (1982).
1H-NMR (400 MHz, CDCl3) d: 5.21 (2H, m), 4.70—4.53 (12H, m),
3.79 (2H, br d, Jꢂ5.6 Hz), 3.75—3.66 (4H, m), 3.40 (6H, s), 3.35 (6H,
s), 3.32 (6H, s), 2.84 (2H, quintet, Jꢂ6.7 Hz), 2.15 (2H, m), 1.96—
1.75 (4H, m), 1.75—1.57 (4H, m), 1.21 (6H, d, Jꢂ6.4 Hz), 1.20 (6H,
d, Jꢂ6.4 Hz), 0.86 (6H, d, Jꢂ6.8 Hz); 13C-NMR (100 MHz, CDCl3) d:
173.77 (C), 98.23 (CH2), 95.76 (CH2), 95.47 (CH2), 82.98 (CH), 74.42
(CH), 70.13 (CH), 70.03 (CH), 56.09 (CH3), 55.92 (CH3), 55.46
(CH3), 43.11 (CH), 41.37 (CH2), 37.58 (CH), 35.06 (CH2), 21.21
(CH3), 12.11 (CH3), 10.67 (CH3).