Communications
Table 2: Hydrolytic kinetic resolution of different terminal epoxides with
homogeneous [Co(salen)] and heterogeneous [Co(salen)]/SBA-16 cata-
lysts.
cooperative activation by separate catalytic centers or
second-order kinetic dependence on the local concentration
of catalysts.
[
a]
Experimental Section
SBA-16 (0.5 g, evacuated at 398 K for 6 h) was dispersed in dichloro-
methane (3 mL) containing the desired amounts of [Co(salen)]
[
b]
[e]
R
S
/C
T [k] Conv [%] ee of
ee of
diol [%]
ep [%]
(0.0040, 0.0125, 0.0500, and 0.0800 g). After stirring the mixture at
[
f]
313 K for 24 h under Ar, the CH Cl was removed by evaporation.
Ph
Ph
2000:1
303
303 22
298
298 52
2
2
2
2
2
[
c]
The resultant solid was introduced to a solution containing dried
toluene (0.62 g), anhydrous pyridine (0.70 g), and propyltrimethox-
ysilane (0.70 g). After refluxing the mixture for 24 h under Ar, the
resultant solid was isolated by filtration, washed thoroughly with
THF, and dried in vacuum. The resultant solid catalyst was denoted as
(
homo.)
2000:1 (het-
23
8
84
84
86
[
d]
ero.)
PhOCH2 10000:1
homo.)
PhOCH2 10000:1
hetero.)
9
(
[
Co(salen)]/SBA-16.
93
(
Received: April 19, 2007
Revised: June 7, 2007
Published online: July 31, 2007
[
[
a] The molar ratio of epoxide to H O is 1:0.75; reaction time, 48 h.
b] The molar ratio of racemic epoxide to [Co(salen)]. [c] Homo. refers to
2
homogeneous [Co(salen)]. [d] Hetero. refers to solid catalyst [Co-
salen)]/SBA-16. [e] The conversion is calculated according to the
(
Keywords: epoxides · heterogeneous catalysis ·
equation in footnote [c] of Table 1. [f] The conversion is estimated
based on the ee value of epoxides.
.
kinetic resolution · nanostructures · SBA-16
Table 3: Recycling test of [Co(salen)]/SBA-16 with a Co content of
0
propylene oxide.
[
1] a) J. A. Ma, D. Cahard, Angew. Chem. 2004, 116, 4666 – 4683;
Angew. Chem. Int. Ed. 2004, 43, 4566 – 4583; b) G. M. Sammis, H.
Danjo, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 9928 – 9929;
c) M. Sawamura, Y. Ito, Chem. Rev. 1992, 92, 857 – 871; d) H.
Steinhagen, G. Helmchen, Angew. Chem. 1996, 108, 2489 – 2492;
Angew. Chem. Int. Ed. Engl. 1996, 35, 2339 – 2342; e) M.
Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187 – 2209;
f) Y. N. Belokon, M. North, V. I. Maleev, N. V. Voskobev, M. A.
Moskalenko, A. S. Peregudov, A. V. Dmitriev, N. S, Ikonnikov,
H. B. Kagan, Angew. Chem. 2004, 116, 4177 – 4181; Angew. Chem.
Int. Ed. 2004, 43, 4085 – 4089; g) B. M. Trost, V. S. C. Yeh, Angew.
Chem. 2002, 114, 889 – 891; Angew. Chem. Int. Ed. 2002, 41, 861 –
.157 wt% (3.4 [Co(salen)] complexes in each cage) in the HKR of
[
a]
[
b]
Cycle times
Reaction time [h]
Diol yield [%]
Diol ee [%]
1
2
3
4
5
6
7
8
12
43
44
45
46
46
45
46
43
98
97
98
98
98
97
97
98
12.5
12.5
12.5
13
14
15
18
863; h) H. Sasai, Y. Satow, K. N. Houk, M. Shibasaka, J. Am.
[
a] The molar ratio of epoxide/H O 1:0.75; S/C 4000:1; reaction
Chem. Soc. 1995, 117, 6194 – 6195; i) B. M. Trost, A. Fettes, B. T.
Shireman, J. Am. Chem. Soc. 2004, 126, 2660 – 2661; j) A. P.
Minton, J. Biol. Chem. 2001, 276, 10577 – 10580; k) M. Jiang,
Z. H. Gao, J. Am. Chem. Soc. 2001, 123, 730 – 731; l) H. Gröger,
Chem. Eur. J. 2001, 7, 5246 – 5251; m) M. Shibasaki, N. Yoshi-
kawa, Chem. Rev. 2002, 102, 2187 – 2209.
2
temperature 283K. [b] GC analysis using nonane as an internal standard.
indicates that the HKR reaction takes place in the nanocages
of SBA-16 and there was no evident leaching of the [Co-
(
[
2] a) D. J. Cole-Hamilton, Science 2003, 299, 1702 – 1706; b) C. Li,
Catal. Rev. Sci. Eng. 2004, 46, 419 – 492; c) P. Mcmorn, G. J.
Hutchings, Chem. Soc. Rev. 2004, 33, 108 – 122; d) Q. H. Fan,
Y. M. Li, A. S. C. Chan, Chem. Rev. 2002, 102, 3385 – 3466; e) Z.
Lu, E. Lindner, H. A. Mayer, Chem. Rev. 2002, 102, 3543 – 3578;
f) D. Astruc, F. Chardac, Chem. Rev. 2001, 101, 2991 – 3024.
salen)] from the solid catalyst.
In conclusion, we have demonstrated for the first time that
the cooperative activation effect can be enhanced in the
nanocage of mesoporous materials. By accommodating the
[
Co(salen)] complexes in the nanocages of SBA-16, an
[3] a) E. Möllmann, P. Tomlinson, W. F. Hölderich, J. Mol. Catal. A
003, 206, 253 – 259; b) W. Kahlen, H. H. Wagner, W. F. Hölder-
2
efficient solid chiral catalyst for the hydrolytic kinetic
resolution of epoxides has been developed. The solid catalyst
exhibits significantly higher activity and enantioselectivity
than the homogeneous [Co(salen)] in the HKR of epoxides at
high S/C ratios. The solid catalyst can be easily recycled by
filtration without any apparent loss of catalytic activity and
enantioselectivity. The nanocages of mesoporous materials
can be used as nanoreactors to confine metal complexes with
a high local concentration and thus lead to the crowded
microenvironment of the complexes that enhance the coop-
erative activation. This work provides a new opportunity for
the design of efficient solid catalysts for the asymmetric
reactions as well as many other reactions, which involve
ich, Catal. Lett. 1998, 54, 85 – 89; c) N. Herron, W. E. Farneth,
Adv. Mater. 1996, 8, 959 – 968; d) D. E. De Vos, M. Dams, B. F.
Sels, P. A. Jacobs, Chem. Rev. 2002, 102, 3615 – 3640; e) P.
Geerlings, A. M. Vos, R. A. Schoonheydt, J. Mol. Structure-
Theochem 2006, 762, 69 – 78; f) K. J. Balkus, Jr., A. K. Khanrna-
medova, K. M. Dixon , F. Bedioui, Appl. Catal. A 1996, 143, 159 –
173; g) S. B. Ogunwumi, T. Bein,Chem. Commun. 1997, 901 – 902;
h) K. Kervinen, P. C. A. Bruijnincx, A. M. Beale, J. G. Mesu, G.
Van Koten, R. J. M. K. Gebbink, B. M. Weckhuysen, J. Am.
Chem. Soc. 2006, 128, 3208 – 3217.
[
4] a) T. W. Kim, R. Ryoo, M. Kruk, K. P. Gierszal, M. Jaroniec, S.
Kamiya, O. Terasaki, J. Phys. Chem. B 2004, 108, 11480 – 11489;
b) H. Q. Yang, J. Li, J. Yang, Z. M. Liu, Q. H. Yang, C. Li, Chem.
Commun. 2007, 1086 – 1088.
6
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 6861 –6865