Article
Trial with Gemfibrozil in Middle-Aged Men with Dyslipidemia.
Safety of Treatment, Changes in Risk Factors, and Incidence of
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 7 2863
Wang, X.; Thompson, R. C.; Dominianni, S. J.; Kauffman, R. F.;
Singh, J.; Bean, J. S.; Bensch, W. R.; Barr, R. W.; Osborne, J.;
Montrose-Rafizadeh, C.; Zink, R. W.; Yumibe, N. P.; Huang, N.;
Luffer-Atlas, D.; Rungta, D.; Maise, D. E.; Mantlo, N. B. Design and
Synthesis of a Potent and Selective Triazolone-Based Peroxisome
Proliferator-Activated Receptor Agonist. J. Med. Chem. 2003, 46,
5121–5124. (f) Nomura, M.; Tanase, T.; Ide, T.; Tsunoda, M.; Suzuki,
M.; Uchiki, H.; Murakami, K.; Miyachi, H. Design, Synthesis, and
Evaluation of Substituted Phenylpropanoic Acid Derivatives as Human
Peroxisome Proliferator Activated Receptor Activators. Discovery of
Potent and Human Peroxiome Proliferator Activated Rceptor
Subtype-Selective Activators. J. Med. Chem. 2003, 46, 3581–3599.
(g) Shi, G. Q.; Dropinski, J. F.; Zhang, Y.; Santini, C.; Sahoo, S. P.;
Berger, J. P.; MacNaul, K. L.; Zhou, G.; Agrawal, A.; Alvaro, R.; Cai,
T.-Q.; Hernandez, M.; Wright, S. D.; Moller, D. E.; Heck, J. V.; Meinke,
P. T. Novel 2,3-Dihydrobenzofuran-2-carboxylic Acids: Highly Potent
and Subtype-Selective PPARR Agonists with Potent Hypolipidemic
Activity. J. Med. Chem. 2005, 48, 5589–5599. (h) Yamazaki, Y.; Abe,
K.; Toma, T.; Nishikawa, M.; Ozawa, H.; Okuda, A.; Araki, T.; Oda, S.;
Inoue, K.; Shibuya, K.; Staels, B.; Fruchart, J. C. Bioorg. Med. Chem.
Lett. 2007, 17, 4689–4693.
Coronary Heart Disease. N. Engl. J. Med. 1987, 317, 1237–1245.
(
b) Rubins, H. B; Robins, S. J.; Collins, D.; Fye, C. L.; Anderson, J. W.;
Elam, M. B.; Faas, F. H.; Linares, E.; Schaefer, E. J.; Schectman, G.;
Wilt, T. J.; Wittes, J. Gemfibrozil for the Secondary Prevention of
Coronary Heart Disease in Men with Low Levels of High-Density
Lipoprotein Cholesterol. Veterans Affairs High-Density Lipoprotein
Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 1999,
341, 410–418.
(
3) (a) Goldbourt, U.; Yaari, S.; Medalie, J. H. Isolated Low
HDL Cholesterol as a Risk Factor for Coronary Heart Disease
Mortality. A 21-Year Follow-Up of 8000 Men. Arterioscler.,
Thromb., Vasc. Biol. 1997, 17, 107–113. (b) Genest, J. J.; McNamara,
J. R.; Salem, D. N.; Schaefer, E. J. Prevalence of Risk Factors in
Men with Premature Coronary Artery Disease. Am. J. Cardiol. 1991,
67, 1185–1189.
(4) (a) Cheng, T. W. P.; Mukherjee, R. PPARs as Targets for Meta-
bolic and Cardiovascular Dieases. Mini-Rev. Med. Chem. 2005, 5,
7
41–753. (b) Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B.
R. The PPARs: From Orphan Receptor to Drug Discovery. J. Med.
Chem. 2000, 43, 527–550. (c) Sher, T.; Yi, H. F.; McBride, O. W.;
Gonzalez, F. J. cDNA Cloning, Chromosomal Mapping, and Functional
Characterization of the Human Peroxisome Proliferator Activated
Receptor. Biochemistry 1993, 32, 5598–5604. (d) Mukherjee, R.;
Jow, L.; Noonan, D.; McDonnell, D. P. Human and Rat Peroxisome
Proliferator Activated Receptors (PPARs) Demonstrate Similar Tissue
Distribution but Different Responsiveness to PPAR Activators.
J. Steroid. Biochem. Mol. Biol. 1994, 51, 157–166.
(10) Devasthale, P. V.; Chen, S.; Jeon, Y.; Qu, F.; Shao, C.; Wang, W.;
Zhang, H.; Cap, M.; Farrelly, D.; Golla, R.; Grover, G.; Harrity,
T.; Ma, Z.; Moore, L.; Ren, J.; Seethala, R.; Cheng, L.; Sleph, P.;
Sun, W.; Tieman, A.; Wetterau, J. R.; Doweyko, A.; Ghandreasena,
G.; Chang, S. Y.; Humphreys, W. G.; Sasseville, V. G.; Biller, S. A.;
Ryono, D. E.; Selan, F.; Hariharan, N.; Cheng, R. T. W.
Design and Synthesis of N-[(4-Methoxyphenoxy)carbonyl]-N-
[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine
[Muraglitazar/BMS-298585], a Novel Peroxisome Proliferator-
Activated Receptor R/γ Dual Agonist with Efficacious Glucose
and Lipid-Lowering Activities. J. Med. Chem. 2005, 48, 2248–
2250.
(11) PDB deposition number for PPARR and compound 2 is 3KDT.
PDB deposition number for PPARR and compound 12 is 3KDU.
(12) Mukherjee, R.;Locke, K. T.;Miao, B.;Meyers, D.;Monshizadegan,
H.; Zhang, R.; Search, D.; Grimm, D.; Flynn, M.; O’Malley, K. M.;
Zhang, L.; Li, J.; Shi, Y.; Kennedy, L. J.; Blanar, M.; Cheng, P. T.;
Tino, J. A.; Srivastava, R. A. Novel Peroxisome Proliferator-
Activated Receptor R Agonists Lower Low-density Lipoprotein
and Triglycerides, Raise High-density Lipoprotein, and Synergisti-
cally Increase Cholesterol Excretion with a Liver X Receptor
Agonist. J. Pharmacol. Exp. Ther. 2008, 327, 716–726.
(13) Seethala, R.; Golla, R.; Ma, Z.; Zhang, H.; O’Malley, K.; Lippy, J.;
Cheng, L.; Mookhtiar, K.; Farrelly, D.; Zhang, L.; Hariharan, N.;
Cheng., P. T. A Rapid, Homogeneous, Fluorescence Polarization
Binding Assay for Peroxisome Proliferator-Activated Receptors
Alpha and Gamma Using a Fluorescein-Tagged Dual PPAR
Alpha/Gamma Activator. Anal. Biochem. 2007, 363, 263–274.
(14) Kliewer, S. A.; Sundseth, S. S.; Jones, S. A.; Brown, P. J.; Wisely,
G. B.; Koble, C. S.; Devchand, P.; Wahli, W.; Willson, T. M.;
Lenhard, J. M.; Lehmann, J. M. Fatty Acids and Eicosanoids
Regulate Gene Expression through Direct Interactions with Per-
oxisome Proliferator-Activated Receptors Alpha and Gamma.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 4318–4323.
(
5) (a) Staels, B.; Maes, M.; Zambon, A. Fibrates and Future PPARR
Agonists in the Treatment of Cardiovascular Diesease. Nat. Clin.
Pract. Cardiovasc. Med. 2008, 5, 542–553. (b) Keating, G. M.;
Ormrod, D. Micronised Fenofibrate. Drugs 2002, 62, 1909–1944.
6) (a) Athyros, V. G.; Papageorgiou, A. A.; Athyrou, V. V.; Demi-
triadis, D. S.; Kontopoulos, A. G. Atorvastatin and Micronized
Fenofibrate along and in Combination in Type 2 Diabetes with
Combined Hyperlipidemia. Diabetes Care 2002, 25, 1198–1202. (b)
Grundy, S. M.; Vega, G. L.; Yuan, Z.; Battisti, W. P; Brady, W. E;
Palmisano, J. Effectivenness and Tolerability of Simvastatin Plus
Fenofibrate for Combined Hyperlipidemia (SAFARI trial). Am.
J. Cardiol. 2005, 95, 2088–2093.
(
(
(
7) Trilipix is trademark of Abbott Laboratories, IL.
8) (a) Grabacka., M.; Plonka., P. M.; Urbanska, K.; Reiss, K.
Peroxisome Proliferator-Activated ReceptorR Activation De-
creases Metastatic Potential of Melanoma Cells in Vitro via
Down-Regulation of Akt. Clin. Cancer Res. 2006, 12, 3028–3036.
(
b) Pozzi, A.; Ibanez, M. R.; Gatica, A. E.; Yang, S.; Wei, S.; Mei, S.;
Falck, J. R.; Capdevila, J. H. Peroxisomal Proliferator-Activated
Receptor-R-Dependent Inhibition of Endothelial Cell Proliferation
and Tumorigenesis. J. Biol. Chem. 2007, 282, 17685–17695. (c)
Yokoyama, Y.; Xin, B.; Shigeto, T.; Umemoto, M.; Kasai-Sakamoto,
A.; Futagami, M.; Tsuchida, S.; Al-Mulla, F.; Mizunuma, H. Clofibric
Acid, a Peroxisome Proliferator-Activated Receptor R Ligand, Inhibits
Growth of Human Ovarian Cancer. Mol. Cancer Ther. 2007, 6, 1379–
1386. (d) Panigrahy, D.; Kaipainen, A.; Huang, S.; Butterfield,
C. E.; Barnes, C. M.; Fannon, M.; Laforme, A. M.; Chaponis, D. M.;
Folkman, J.; Kieran, M. W. PPAR.R Agonist Fenofibrate Suppresses
Tumor Growth through Direct and Indirect Angiogenesis Inhibition.
Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (3), 985–990.
(15) Mukherjee, R. PPARs: Versatile Targets for Future Therapy for
Obesity, Diabetes and Cardiovascular Diseases. Drug News Per-
spect. 2002, 15, 261–267.
(16) Osumi, T.; Wen, J. K; Hashimoto, T. Two Cis-Acting Regulatory
Sequences in the Peroxisome Proliferator-Pesponsive Enhancer
Region of Rat Acyl-CoA Oxidase Gene. Biochem. Biophys. Res.
Commun. 1991, 175, 866–871.
(17) Mukherjee, R.; Sun, S; Santomenna, L.; Miao, B.; Walton, H.;
Liao, B.; Locke, K.; Zhang, J. H.; Nguyen, S. H.; Zhang, L. T.;
Murphy, K.; Ross, H. O.; Xia, M. X.; Teleha, C.; Chen, S. Y.;
Selling, B.; Wynn, R.; Burn, T.; Young, P. R. Ligand and Coacti-
vator Recruitment Preferences of Peroxisome Proliferator
Activated Receptor Alpha. J. Steroid Biochem. Mol. Biol. 2002,
81, 217–225.
(
9) (a) Sierra, M. L.; Beneton, V.; Boullay, A.-B.; Boyer, T.; Brewster,
A. G.; Donche, F.; Forest, M.-C.; Fouchet, M.-H.; Gellibert, F. J.;
Grillot, D. A.; Lambert, M. H.; Laroze, A.; Le Grumelec, C.;
Linget, J. M.; Montana, V. G.; Nguyen, V.-L.; Nicodeme, E.; Patel,
V.; Penfornis, A.; Pineau, O.; Pohin, D.; Potvain, F.; Poulain, G.;
Ruault, C. B.; Saunders, M.; Toum, J.; Xu, H. E.; Xu, R. X.;
Pianetti, P. M. Substituted 2-[(4-Aminomethyl)phenoxy]-2-
methylpropionic Acid PPARR Agonists. 1. Discovery of a Novel
Series of Potent HDLc Raising Agents. J. Med. Chem. 2007, 50,
685–695. (b) Brown, P. J.; Winegar, D. A.; Plunket, K. D.; Moore, L. B.;
Lewis, M. C.; Wilson, J. G.; Sundseth, S. S.; Koble, C. S.; Wu, Z.;
Chapman, J. M.; Lehmann, J. M.; Kliewer, S. A.; Willson, T. M. A
Ureido-thioisobutyric Acid (GW9578) Is a Subtype-Selective PPARRR
Agonist with Potent Lipid-Lowering Activity. J. Med. Chem. 1999, 42,
(18) (a) Berthou, L.; Duverger, N.; Emmanuel., F.; Langou €e t, S.;
Auwerx, J.; Guillouzo, A.; Fruchart, J. C.; Rubin, E.; Den ꢁe fle,
P.; Staels, B.; Branellec, D. Opposite Regulation of Human versus
Mouse Apolipoprotein A-I by Fibrates in Human Apolipoprotein
A-I Transgenic Mice. J. Clin. Invest. 1996, 97, 2408–2416. (b) Rubin,
E. M.; Ishida, B. Y.; Clift, S. M.; Krauss., R. M. Expression of Human
Apolipoprotein A-I in Transgenic Mice Results in Reduced Plasma
Levels of Murine Apolipoprotein A-I and the Appearance of Two
New High Density Lipoprotein Size Subclasses. Proc. Natl. Acad.
Sci. U.S.A. 1991, 88, 434–438.
3
785–3788. (c) Brown, P. J.; Stuart, L. W.; Hurley, K. P.; Lewis, M. C.;
Winegar, D. A.; Wilson, J. G.; Wilkison, W. O.; Ittoop, O. R.; Willson,
T. M. Identification of a Subtype Selective Human PPARR Agonist
through Parallel-Array Synthesis. Bioorg. Med. Chem. Lett. 2001, 11,
1
225–1227. (d) Miyachi, H.; Nomura, M.; Tanase, T.; Suzuki, M.;
Murakami, K.; Awano, K. Enantio-Dependent Binding and Transacti-
vation of Optically Active Phenylpropanoic Acid Derivatives at Human
Peroxisome Proliferator-Activated Receptor Alpha. Bioorg. Med.
Chem. Lett. 2002, 12, 333–335. (e) Xu, Y.; Mayhugh, D.; Saeed, A.;
(19) Wang, P. R.; Guo, Q.; Ippolito, M.; Wu, M.; Milot, D.; Ventre, J.;
Doebber, T.; Wright, S. D.; Chao, Y. S. High Fat Fed Hamster, a
Unique Animal Model for Treatment of Diabetic Dyslipidemia