Please do not adjust margins
ChemComm
DOI: 10.1039/C5CC03969J
COMMUNICATION
Journal Name
5
6
7
M. Ogawa, N. Kosaka, P. L. Choyke and H. Kobayashi, ACS
Chem. Biol., 2009, , 535-546.
Y.-D. Lee, C.-K. Lim, A. Singh, J. Koh, J. Kim, I. C. Kwon and S.
Kim, ACS Nano, 2012, , 6759-6766.
4
6
S. Kamino, Y. Horio, S. Komeda, K. Minoura, H. Ichikawa, J.
Horigome, A. Tatsumi, S. Kaji, T. Yamaguchi, Y. Usami, S.
Hirota, S. Enomoto and Y. Fujita, Chem. Commun., 2010, 46
,
9
013-9015.
Y. Shirasaki, S. Kamino, M. Tanioka, K. Watanabe, Y.
Takeuchi, S. Komeda and S. Enomoto, Chem.–Asian J., 2013,
, 2609-2613.
8
Fig. 5 SiR-An fluorescence image in HeLa cells after incubating with [SiR-An] =
8
1
00 nM medium for 1 hr. λex = 640 nm and scale bar: 10 µm.
9
1
M. Kasha, H. R. Rawls and M. Ashraf El-Bayoumi, Pure Appl.
Chem., 1965, 11, 371-592.
0 S. Choi, J. Bouffard and Y. Kim, Chem. Sci., 2014, 5, 751-755.
imaging in future although the structure is not highly water- 11 S. Kim, T. Tachikawa, M. Fujitsuka and T. Majima, J. Am.
Chem. Soc., 2014, 136, 11707-11715.
soluble.
In this communication, we have designed H- and J-aggregate
system of rhodamine derivatives substituted by 9-
phenylanthracenyl group and thoroughly characterized using
X-ray crystallography analysis. This study proposes a 9- 13 K. Sekiguchi, S. Yamaguchi and T. Tahara, J. Phys. Chem. A,
006, 110, 2601-2606.
1
2 G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G.
Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa, Z. G. Luo,
C. Schultz, E. A. Lemke, P. Heppenstall, C. Eggeling, S. Manley
a
and K. Johnsson, Nat. Chem., 2013, 5, 132-139.
2
phenylanthracenyl group as
a versatile intramolecular
1
4 B. Z. Packard, A. Komoriya, D. D. Toptygin and L. Brand, J.
Phys. Chem. B, 1997, 101, 5070-5074.
5 U. Giovanella, G. Leone, G. Ricci, T. Virgili, I. S. Lopez, S. K.
Rajendran and C. Botta, Phys. Chem. Chem. Phys., 2012, 14
13646-13650.
template to align the target fluorophores depending on the
2
presence of organic solvent and counter ions.
6-28
Provided
1
that the fluorophore and anthracene parts are properly
modified, this dyad design holds a great potential for
sophisticated controlling of the self-assembly of fluorophores,
for example, a fluorescence probe with complete fluorescence
quenching via intermolecular photoinduced electron transfer,
sensitive colorimetric probes, and near-infrared absorbing
,
1
1
1
6 V. Martinez, F. Arbeloa, J. Prieto, T. Lopez and I. Arbeloa, J.
Phys. Chem. B, 2004, 108, 20030-20037.
7 F. del Monte and D. Levy, J. Phys. Chem. B, 1998, 102, 8036-
041.
8 M. Busby, C. Blum, M. Tibben, S. Fibikar, G. Calzaferri, V.
8
materials for the energy field application
1
Furthermore, O
Subramaniam and L. De Cola, J. Am. Chem. Soc., 2008, 130,
1
0970-10976.
9 J. R. Sanchez-Valencia, J. Toudert, L. Gonzalez-Garcia, A. R.
Gonzalez-Elipe and A. Barranco, Chem. Commun., 2010, 46
372-4374.
2
is a particularly important reactive oxygen
1
species in photodynamic therapy and can react with
anthracene derivatives, resulting in the endoperoxide
formation. Concerning that SiR-An exhibited a good cell
,
4
2
2
0 F. Würthner, T. E. Kaiser and C. R. Saha-Möller, Angew.
Chem. Int. Ed., 2011, 50, 3376-3410.
1 T. Kobayashi, J. Du and Y. Kida, in J-Aggregates, ed. T.
Kobayashi, World Scientific, Singapore, 2011, Vol. 2, pp. 1-
permeability (Fig. 5), a fluorophore with 9-phenylanthracenyl
1
group suggests a new concept of the cellular O
2
detection
based on the dissociation of fluorophore self-assembly.
4
7.
We are grateful to Prof. A. Sugimoto for helpful advice on
chemical synthesis, P. Zhang for SEM images, A. Kuroda for the
preparation of Si-Me, and T. Miyano for the measurement of
X-ray crystallography (all belonged to Osaka University). X-ray
diffraction data were collected at the BL38B1 in the SPring-8
with approval of JASRI (2014A1252). This work has been partly
supported by the Innovative Project for Advanced Instruments,
Renovation Center of Instruments for Science Education and
Technology, Osaka University, and a Grant-in-Aid for Scientific
Research (Projects 25220806, 25288035, and others) from the
Ministry of Education, Culture, Sports, Science and Technology
2
2 F. Fennel, S. Wolter, Z. Xie, P.-A. Plötz, O. Kühn, F. Würthner
and S. Lochbrunner, J. Am. Chem. Soc., 2013, 135, 18722-
18725.
3 D. Ley, C. X. Guzman, K. H. Adolfsson, A. M. Scott and A. B.
Braunschweig, J. Am. Chem. Soc., 2014, 136, 7809-7812.
4 M. Supur and S. Fukuzumi, ECS J. Solid State Sci. Technol.,
2
2
2
2
2
2
2
013,
5 D. M. Eisele, J. Knoester, S. Kirstein, J. P. Rabe and D. A.
Vanden Bout, Nat. Nanotechnol., 2009, , 658-663.
2, M3051-M3062.
4
6 T. Hinoue, M. Miyata, I. Hisaki and N. Tohnai, Angew. Chem.
Int. Ed., 2012, 51, 155-158.
7 M. Sugino, K. Hatanaka, Y. Araki, I. Hisaki, M. Miyata and N.
Tohnai, Chem.–Eur. J., 2014, 20, 3069-3076.
8 M. Sugino, K. Hatanaka, T. Miyano, I. Hisaki, M. Miyata, A.
Sakon, H. Uekusa and N. Tohnai, Tetrahedron Lett., 2014, 55
(MEXT) of the Japanese Government.
,
7
32-736.
9 R. L. Halterman, J. L. Moore and L. M. Mannel, J. Org. Chem.,
008, 73, 3266-3269.
0 D. Setiawan, A. Kazaryan, M. A. Martoprawiro and M. Filatov,
Phys. Chem. Chem. Phys., 2010, 12, 11238-11244.
1 A. Li, L. Zhao, J. Hao, R. Ma, Y. An and L. Shi, Langmuir, 2014,
2
3
3
Notes and references
2
1
Y. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato and T.
Nagano, J. Am. Chem. Soc., 2014, 136, 4273-4280.
2
S.-J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M.-G. Choi,
D. Kim and S. Y. Park, J. Am. Chem. Soc., 2010, 132, 13675-
30, 4797-4805.
1
3683.
D. Zhai, W. Xu, L. Zhang and Y.-T. Chang, Chem. Soc. Rev.,
014, 43, 2402-2411.
Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011,
, 5361-5388.
3
4
2
4
0
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins