Paper
5 (a) S.-W. Chen, R. B. Kawthekar and G.-J. Kim, Tetrahedron
Catalysis Science & Technology
15270–15279; (d) C. Maeda, T. Taniguchi, K. Ogawa and
T. Ema, Angew. Chem., Int. Ed., 2015, 54, 134–138.
13 Z.-Z. Yang, L.-N. He, C.-X. Miao and S. Chanfreau,
Adv. Synth. Catal., 2010, 352, 2233–2240.
Lett., 2007, 48, 297–300; (b) X. Zhang, Y.-B. Jia, X.-B. Lu,
B. Li, H. Wang and L.-C. Sun, Tetrahedron Lett., 2008, 49,
6
589–6592; (c) S. Zhang, Y. Huang, H. Jing, W. Yao and
P. Yan, Green Chem., 2009, 11, 935–938; (d) J. Meléndez,
M. North, P. Villuendas and C. Young, Dalton Trans., 2011, 40,
14 S.-S. Wu, X.-W. Zhang, W.-L. Dai, S.-F. Yin, W.-S. Li,
Y.-Q. Ren and C.-T. Au, Appl. Catal., A, 2008, 341, 106–111.
15 (a) D. M. Hodgson, M. J. Fleming and S. J. Stanway, J. Org.
Chem., 2007, 72, 4763–4773; (b) H. Zhou, W.-Z. Zhang,
C.-H. Liu, J.-P. Qu and X.-B. Lu, J. Org. Chem., 2008, 73,
8039–8044.
3
2
885–3902; (e) Z. Tasci and M. Ulusoy, J. Organomet. Chem.,
012, 713, 104–111; ( f ) T. Roy, R. I. Kureshy, N. H. Khan,
S. H. R. Abdi and H. C. Bajaj, Catal. Sci. Technol., 2013, 3,
661–2667; (g) R. Luo, X. Zhou, S. Chen, Y. Li, L. Zhou and
2
H. Ji, Green Chem., 2014, 16, 1496–1506.
(a) J. Peng and Y. Deng, New J. Chem., 2001, 25, 639–641; (b)
J. Sun, S. Fujita, F. Zhao and M. Arai, Green Chem., 2004, 6,
16 S. C. Cheng, C. A. Blaine, M. G. Hill and K. R. Mann, Inorg.
Chem., 1996, 35, 7704–7708.
17 A. Berkessel and M. Brandenburg, Org. Lett., 2006, 8,
4401–4404.
6
6
13–616; (c) J. Sun, S. Zhang, W. Cheng and J. Ren,
Tetrahedron Lett., 2008, 49, 3588–3591; (d) L. Han,
H.-J. Choi, S.-J. Choi, B. Liu and D.-W. Park, Green Chem.,
18 (a) T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara,
M. Yoshihara and T. Maeshima, Chem. Commun.,
1997, 1129–1130; (b) Y. Du, J.-Q. Wang, J.-Y. Chen, F. Cai,
J.-S. Tian, D.-L. Kong and L.-N. He, Tetrahedron Lett.,
2006, 47, 1271–1275.
2
011, 13, 1023–1028; (e) J. Sun, J. Wang, W. Cheng, J. Zhang,
X. Li, S. Zhang and Y. She, Green Chem., 2012, 14, 654–660;
f ) W.-L. Dai, B. Jin, S.-L. Luo, X.-B. Luo, X.-M. Tu and
(
C.-T. Au, J. Mol. Catal. A: Chem., 2013, 378, 326–332; (g)
A.-L. Girard, N. Simon, M. Zanatta, S. Marmitt, P. Gonçalves
and J. Dupont, Green Chem., 2014, 16, 2815–2825.
19 DFT calculations were performed to investigate the
regioselectivity. The potential energy profiles for the two
pathways are compared in Fig. S1 (ESI†). The energy barriers
for α and β attacks on 1b were calculated to be 37.4 and
7
8
(a) C. Qi, H. Jiang, Z. Wang, B. Zou and S. Yang, Synlett,
−
1
2
007, 255–258; (b) H.-F. Jiang, B.-Z. Yuan and C.-R. Qi,
25.9 kcal mol , respectively, and those for α and β attacks
−
1
Chin. J. Chem., 2008, 26, 1305–1308; (c) K. R. Roshan,
A. C. Kathalikkattil, J. Tharun, D. W. Kim, Y. S. Won and
D. W. Park, Dalton Trans., 2014, 43, 2023–2031; (d)
B. Chatelet, L. Joucla, J.-P. Dutasta, A. Martinez and
V. Dufaud, Chem. – Eur. J., 2014, 20, 8571–8574.
on 1d were calculated to be 29.7 and 26.1 kcal mol ,
respectively. These results indicate that the β attack is more
favorable than the α attack. This is different from a
frequently observed tendency that terminal epoxides with
electron-donating substituents, such as 1b, favor the β
attack, whereas those with electron-withdrawing or aromatic
substituents, such as 1d, favor the α attack. In the present
case, the α attack is not favored probably because in the case
of the α attack, steric repulsion between the benzene ring of
1d and the bulky nucleophile, the bicarbonate ion, is pre-
dominant over the resonance stabilization caused by the
benzene ring of 1d.
(a) V. Caló, A. Nacci, A. Monopoli and A. Fanizzi, Org. Lett.,
2
002, 4, 2561–2563; (b) Y. Zhao, J.-S. Tian, X.-H. Qi,
Z.-N. Han, Y.-Y. Zhuang and L.-N. He, J. Mol. Catal. A:
Chem., 2007, 271, 284–289; (c) B. Barkakaty, K. Morino,
A. Sudo and T. Endo, J. Polym. Sci., Part A: Polym. Chem.,
2
011, 49, 545–549; (d) S. Kumar, S. L. Jain and B. Sain,
Tetrahedron Lett., 2011, 52, 6957–6959; (e) J.-Q. Wang,
K. Dong, W.-G. Cheng, J. Sun and S.-J. Zhang, Catal. Sci.
Technol., 2012, 2, 1480–1484.
20 For DFT calculations on the cycloaddition reactions of
2
epoxides with CO , see: (a) F. Chen, X. Li, B. Wang, T. Xu,
9
(a) A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori
and R. Sartorio, Tetrahedron Lett., 2003, 44, 2931–2934; (b)
H. Zhou, Y.-M. Wang, W.-Z. Zhang, J.-P. Qu and X.-B. Lu,
Green Chem., 2011, 13, 644–650; (c) W. Cheng, X. Chen,
J. Sun, J. Wang and S. Zhang, Catal. Today, 2013, 200,
S.-L. Chen, P. Liu and C. Hu, Chem. – Eur. J., 2012, 18,
9870–9876; (b) F. Castro-Gómez, G. Salassa, A. W. Kleij and
C. Bo, Chem. – Eur. J., 2013, 19, 6289–6298; (c) D. Adhikari,
S. T. Nguyen and M.-H. Baik, Chem. Commun., 2014, 50,
2676–2678; (d) S. Foltran, R. Mereau and T. Tassaing, Catal.
Sci. Technol., 2014, 4, 1585–1597.
1
17–124; (d) C. J. Whiteoak, A. H. Henseler, C. Ayats,
A. W. Kleij and M. A. Pericàs, Green Chem., 2014, 16,
552–1559.
0 T. Sakai, Y. Tsutsumi and T. Ema, Green Chem., 2008, 10,
37–341.
21 M. J. Frisch, et al., Gaussian 09, revision D.01, Gaussian, Inc.,
Wallingford, CT, 2009.
22 J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys.,
2008, 10, 6615–6620.
1
1
1
1
3
1 Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema and
T. Sakai, Org. Lett., 2010, 12, 5728–5731.
2 (a) T. Ema, Y. Miyazaki, S. Koyama, Y. Yano and T. Sakai,
Chem. Commun., 2012, 48, 4489–4491; (b) T. Ema,
Y. Miyazaki, T. Taniguchi and J. Takada, Green Chem.,
23 (a) S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys.,
1981, 55, 117–129; (b) B. Mennucci and J. Tomasi, J. Chem.
Phys., 1997, 106, 5151–5158; (c) R. Cammi, B. Mennucci and
J. Tomasi, J. Phys. Chem. A, 2000, 104, 5631–5637.
24 (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78,
4066–4073; (b) A. E. Reed, R. B. Weinstock and F. Weinhold,
J. Chem. Phys., 1985, 83, 735–746.
2
013, 15, 2485–2492; (c) T. Ema, Y. Miyazaki, J. Shimonishi,
C. Maeda and J. Hasegawa, J. Am. Chem. Soc., 2014, 136,
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2015