Journal of the American Chemical Society
Communication
a
(2) For reviews, see: (a) Cardona, F.; Goti, A. Nat. Chem. 2009, 1,
269. (b) De Jong, S.; Nosal, D. G.; Wardrop, D. J. Tetrahedron 2012,
Scheme 6. Proposed Mechanism
68, 4067. (c) Muniz, K.; Martínez, C. J. Org. Chem. 2013, 78, 2168.
̃
(d) Zhu, Y.; Cornwall, R. G.; Du, H.; Zhao, B.; Shi, Y. Acc. Chem. Res.
2014, 47, 3665.
(3) (a) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
(b) Wang, B.; Du, H.; Shi, Y. Angew. Chem., Int. Ed. 2008, 47, 8224.
(c) Zhao, B.; Peng, X.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132,
11009. (d) Roben, C.; Souto, J. A.; Gonzal
́
ez, Y.; Lishchynskyi, A.;
̈
Muniz, K. Angew. Chem., Int. Ed. 2011, 50, 9478. (e) Muniz, K.; Kirsch,
̃
̃
J.; Chav
́
ez, P. Adv. Synth. Catal. 2011, 353, 689. (f) Olson, D. E.; Su, J.
Y.; Roberts, D. A.; Du Bois, J. J. Am. Chem. Soc. 2014, 136, 13506.
(g) Danneman, M. W.; Hong, K. B.; Johnston, J. N. Org. Lett. 2015, 17,
2558. (h) Ciesielski, J.; Dequirez, G.; Retailleau, P.; Gandon, V.;
Dauban, P. Chem. - Eur. J. 2016, 22, 9338. (i) Muniz, K.; Barreiro, L.;
̃
Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
(4) (a) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147.
(b) Ingalls, E. L.; Sibbald, P. A.; Kaminsky, W.; Michael, F. E. J. Am.
Chem. Soc. 2013, 135, 8854.
(5) Shen, K.; Wang, Q. Chem. Sci. 2015, 6, 4279.
(6) Shen, K.; Wang, Q. J. Am. Chem. Soc. 2017, 139, 13110.
(7) Liu, R.-H.; Wei, D.; Han, B.; Yu, W. ACS Catal. 2016, 6, 6525.
(8) Khoder, Z. M.; Wong, C. E.; Chemler, S. R. ACS Catal. 2017, 7,
4775.
a
For clarity, oxidation states and Lossen rearrangement are omitted,
1a is shown, and OPiv and Cl, when on Ir, are abbreviated as X. See
Scheme 5a for the postulated Lossen rearrangement mechanism.
(9) Kong, A.; Blakey, S. B. Synthesis 2012, 44, 1190.
(10) Archambeau, A.; Rovis, T. Angew. Chem., Int. Ed. 2015, 54,
13337.
(11) (a) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc.
2011, 133, 6449. (b) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F.
lactam 3 and regenerates the active catalyst. Conversely, in
TFE/2 M KHCO3, the basicity of the solvent mollifies hydrogen
bonding to 2 and speeds up nucleophilic attack, allowing seven-
membered iridacycle VI to form. Alternatively, the electron-
deficiency of [Cp*pCF3IrCl2]2 slows down oxidation of the
catalyst to III. Nitrene formation followed by reductive
coupling, or alternatively reductive elimination followed by
oxidative insertion into the N−O bond closes the lactam ring
and generates VII. Protodemetalation generates δ-lactam 4 and
regenerates active catalyst I.
In conclusion, we have described a novel, regiodivergent
alkene diamination reaction that proceeds under mild
conditions, wherein two orthogonal nitrogen units are installed
across the double bond and the choice of solvent and additive
determine the regioselectivity. Investigation of the mechanism
revealed that this reaction can proceed via two distinct pathways,
likely involving Ir nitrenoid intermediates. Efforts at extending
this reactivity are currently underway.
J. Am. Chem. Soc. 2011, 133, 2350. (c) Hyster, T. K.; Knorr, L.; Ward,
̈
T. R.; Rovis, T. Science 2012, 338, 500. (d) Hyster, T. K.; Rovis, T.
Synlett 2013, 24, 1842. (e) Hyster, T. K.; Dalton, D. M.; Rovis, T.
Chem. Sci. 2015, 6, 254. (f) Semakul, N.; Jackson, K. E.; Paton, R. S.;
Rovis, T. Chem. Sci. 2017, 8, 1015. (g) Piou, T.; Romanov-Michailidis,
F.; Romanova-Michaelides, M.; Jackson, K. E.; Semakul, N.; Taggart, T.
D.; Newell, B. S.; Rithner, C. D.; Paton, R. S.; Rovis, T. J. Am. Chem.
Soc. 2017, 139, 1296.
(12) (a) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136,
5904. (b) Kim, H.; Chang, S. ACS Catal. 2015, 5, 6665.
(13) Dialkyl amines participate under these conditions with modest
selectivities for the γ-lactam but proceed in low yields (∼6:1 rr, ∼20%
yield).
(14) [Cp*pCF3IrCl2]2 was found to be incompatible with alkyl amines.
Additionally, we found 4aa to be the major product when this catalyst
(16) No product was observed when catalyst was omitted in either
HFIP or TFE/2 M KHCO3 conditions.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(17) For a thorough theoretical and experimental examination into
Ir(V)-nitrenoid formation using Cp*Ir(III) complexes, see: Park, Y.;
Heo, J.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020.
(18) Widenhoefer has used a similar deuterium-labeling strategy to
determine that a Pd(II)-catalyzed alkene hydroalkylation with a
diketone proceeds through an outer sphere anti-carbometalation
pathway. See: Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003,
125, 2056.
(19) Reductive elimination of IV can be envisioned to deliver a
bicyclic acyl aziridine, which one might expect would lead to ring-
opening to deliver one or both of the observed products. However, this
aziridine has never been isolated, has resisted our own attempts at
isolation and cannot account for the effect of catalyst structure on
Experimental details, characterization data, and NMR
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank NIGMS (GM80442) for support.
■
REFERENCES
■
(1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX