Table 4 NHC-catalysed intermolecular asymmetric Stetter reaction of
Chem., Int. Ed., 2005, 44, 7506; (c) J. S. Johnson, Angew. Chem., Int. Ed.,
2004, 43, 1326.
acetaldehyde with a variety of Michael acceptorsa
2 (a) H. Stetter and M. Schreckenberg, Angew. Chem., Int. Ed. Engl.,
1973, 12, 81; (b) H. Stetter and H. Kuhlmann, Org. React., 1991, 40,
407; (c) D. Enders and T. Balensiefer, Acc. Chem. Res., 2004, 37, 534;
(d) M. Christmann, Angew. Chem., Int. Ed., 2005, 44, 2632; (e) D. Enders,
O. Niemeier and A. Henseler, Chem. Rev., 2007, 107, 5606; (f) T. Rovis,
Chem. Lett., 2008, 37, 2.
3 D. Enders, K. Breuer, J. Runsink and J. H. Teles, Helv. Chim. Acta, 1996,
79, 1899.
4 (a) M. S. Kerr, J. Read de Alaniz and T. Rovis, J. Am. Chem. Soc., 2002,
124, 10298; (b) M. S. Kerr and T. Rovis, Synlett, 2003, 1934; (c) M. S.
Kerr and T. Rovis, J. Am. Chem. Soc., 2004, 126, 8876; (d) J. Read de
Alaniz and T. Rovis, J. Am. Chem. Soc., 2005, 127, 6284; (e) M. S. Kerr,
J. Read de Alaniz and T. Rovis, J. Org. Chem., 2005, 70, 5725; (f) N.
T. Reynolds and T. Rovis, Tetrahedron, 2005, 61, 6368; (g) J. L. Moore,
M. S. Kerr and T. Rovis, Tetrahedron, 2006, 62, 11477; (h) Q. Liu and
T. Rovis, J. Am. Chem. Soc., 2006, 128, 2552; (i) Q. Liu and T. Rovis,
Org. Process Res. Dev., 2007, 11, 598; (j) J. Read de Alaniz, M. S. Kerr,
J. L. Moore and T. Rovis, J. Org. Chem., 2008, 73, 2033; (k) A. Orellana
and T. Rovis, Chem. Commun., 2008, 730; (l) J. Pesch, K. Harms and T.
Bach, Eur. J. Org. Chem., 2004, 2025; (m) S. M. Mennen, J. T. Blank, M.
B. Tran-Dube´, J. E. Imbriglio and S. J. Miller, Chem. Commun., 2005,
195; (n) Y. Matsumoto and K. Tomioka, Tetrahedron Lett., 2006, 47,
5843.
Entry
Substrate
Product
Solvent
Yield (%)b
ee (%)c
1
2
3
4
5
3a
3b
3e
3f
8ad
8b
8e
8f
THF
THF
THF
CHCl3
THF
42
62
78
85
43
57
76
62
60
58
3g
8g
a General conditions: 3 (0.5 mmol), acetaldehyde (5 mmol), 7a (10 mol%),
Cs2CO3 (10 mol%), THF (1 mL), 20 ◦C, 24 h. b Isolated yield. c Determined
by HPLC analysis using a chiral column. d The absolute configurations
were determined as described in ref. 5f.
5 (a) Q. Liu, S. Perreault and T. Rovis, J. Am. Chem. Soc., 2008, 130, 14066;
(b) D. Enders and J. Han, Synthesis, 2008, 3864; (c) D. A. DiRocco, K.
M. Oberg, D. M. Dalton and T. Rovis, J. Am. Chem. Soc., 2009, 131,
10872; (d) Q. Liu and T. Rovis, Org. Lett., 2009, 11, 2856; (e) D. Enders,
J. Han and A. Henseler, Chem. Commun., 2008, 3989; (f) C. Dresen, M.
Richter, M. Pohl, S. Lu¨deke and M. Mu¨ller, Angew. Chem., Int. Ed.,
2010, 49, 6600.
6 (a) J. W. Yang, C. Chandler, M. Stadler, D. Kampen and B. List,
Nature, 2008, 452, 453; (b) Y. Hayashi, T. Itoh, S. Aratake and H.
Ishikawa, Angew. Chem., Int. Ed., 2008, 47, 2082; (c) P. Garc´ıa-Garc´ıa,
A. Lade´peˆche, R. Halder and B. List, Angew. Chem., Int. Ed., 2008,
47, 4719; (d) Y. Hayashi, T. Itoh, M. Ohkubo and H. Ishikawa, Angew.
Chem., Int. Ed., 2008, 47, 4722; (e) Y. Hayashi, T. Okano, T. Itoh, T.
Urushima, H. Ishikawa and T. Uchimaru, Angew. Chem., Int. Ed., 2008,
47, 9053; (f) Y. Hayashi, S. Samanta, T. Itoh and H. Ishikawa, Org.
Lett., 2008, 10, 5581; (g) T. Kano, Y. Yamaguchi and K. Maruoka,
Angew. Chem., Int. Ed., 2009, 48, 1838; (h) M. Y. Jin, S. M. Kim, H.
Han, D. H. Ryu and J. W. Yang, Org. Lett., 2011, 13, DOI: 10.1021/
ol102937w.
Conclusions
In summary, we have developed the NHC-catalysed non-
asymmetric intermolecular Stetter reaction of acetaldehyde as
a complementary method to the enzymatic generation of the
acylanion. These reactions were conducted with a variety of
Michael acceptors in the presence of N-heterocyclic carbene
catalysts, resulting in chemical yields above 95% in most cases. We
also conducted the asymmetric intermolecular Stetter reaction of
acetaldehyde with a variety of Michael acceptors in the presence
of cis-aminoindanol-based chiral NHC catalyst 7a to create 1,4-
diketones with moderate to good enantioselectivities (up to 76%
ee). Investigations to uncover a highly enantioselective variant of
this reaction is currently underway.
7 A. Cosp, C. Dresen, M. Pohl, L. Walter, C. Ro¨hr and M. Mu¨ller, Adv.
Synth. Catal., 2008, 350, 759.
Acknowledgements
8 (a) General procedure for the synthesis of trans-chalcone derivatives 3b, 3c,
3d, 3e, 3f , 3g, see: T. Narender and K. T. Papi Reddy, Tetrahedron Lett.,
2007, 48, 3177; (b) trans-Chalcone derivatives were characterized by 1H
NMR and 13C NMR spectra, and we are found to match previously
reported data: 3b,8c 3c,8d 3d,8e 3e,8f 3f, 8g3g,8f see: (c) B. C. Ranu and
R. Jana, J. Org. Chem., 2005, 70, 8621; (d) M.-L. Yao, M. S. Reddy, L.
Yong, I. Walfish, D. W. Blevins and G. W. Kabalka, Org. Lett., 2010, 12,
700; (e) W.-B. Yi and C. Cai, J. Fluorine Chem., 2009, 130, 484; (f) T.
Ishikawa, T. Mizuta, K. Hagiwara, T. Ailawa, T. Kudo and S. Saito,
J. Org. Chem., 2003, 68, 3702; (g) B. Xin, Y. Zhang and K. Cheng,
Synthesis, 2007, 1970.
This work was supported by the NRF WCU program (R31-
2008-000-10029-0) to J.W.Y. and C.E.S., the NRF grant (No.
2010-0023127) to J.W.Y., and the NRF Priority Research Centers
Program (No. 2010-0029698) to D.H.R.
Notes and references
1 For general reviews on NHC catalysis, see: (a) D. Enders, O. Niemeier
and A. Henseler, Chem. Rev., 2007, 107, 5606; (b) K. Zeitler, Angew.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 2069–2071 | 2071
©