Angewandte Chemie International Edition
10.1002/anie.201712945
COMMUNICATION
+
-
Figure 2 shows that addition of colorless NO PF
vs. FeCp* ) to 14 in DCM oxidizes the 25 Fc* centers (E1/2
.36V vs. FeCp* ) of 14 with an exergonic driving force of 1.18 V
yielding the olive-green polymer 14[PF 25. Oxidation of 14 with
HAuCl in THF (Figure 3) also gives an olive-green color that
slowly turns light-purple, however, the color of Au nanoparticles
6
(E° = 1.54 V
[5]
a) D. A. Foucher, B. Z. Tang, I. Manners, J. Am. Chem. Soc. 1992, 114,
6
246-6248; b) X. Wang, G. Guerin, H. Wang, Y. Wang, I. Manners,
2
=
Science 2007, 317, 644-647; c) A. D. Russell, R. A. Musgrave, L. K.
Stoll, P. Choi, H. Qiu, I. Manners, J. Organomet. Chem. 2015, 784, 24-
0
2
6
]
3
0.
4
[
[
6]
7]
a) D. Astruc, Electron-Transfer and Radical Processes in Transition
Metal Chemistry, VCH, New York, 1995; b) D. Astruc, Eur. J. Inorg.
Chem. 2017, 6-29.
(
AuNPs with 130-nm core, Figures S82 and S83) due to slow
[
10a,18]
a) L. Chabanne, I. Matas, S. K. Patra, I. Manners, Polym. Chem. 2011,
2, 2651-2660; b) J. B. Gilroy, S. K. Patra, J. M. Mitchels, M. A. Winnik, I.
Manners, Angew. Chem. Int. Ed. 2011, 50, 5851-5855; c) R H. Staff, M.
Gallei, M. Mazurowski, M. Rehahn, R. Berger, K. Landfester, D. Crespy,
ACS Nano 2012, 6, 9042-9049; d) N. McGrath, F. H. Schacher, H. Qiu,
S. Mann, M. A. Winnik, I. Manners, Polym. Chem. 2014, 5, 1923-1929;
e) A. S. Abd-El-Aziz, C. Agatemor, N. Etkin, Macromol. Rapid Commun.
2014, 35, 513-559; f) C. G. Hardy, J. Zhang, Y. Yan, L. Ren, C. Tang,
Prog. Polym. Sci. 2014, 39, 1742-1976; g) J.-F. Lutz, J.-M. Lehn, E. W.
Meijers, K. Matyjaszewski, Nat. Mater. Rev. 2016, 1, 16024; h) A. S.
Campbell, H. Murata, S. Carmali, K. Matyjaszewski, M. F. Islam, A. J.
Russel, Biosens. Bioelectron. 2016, 86, 446-453; i) K. Y. Zhang, S. J.
Liu, Q. Zhao, W. Huang, Coord. Chem. Rev. 2016, 319, 180-195; j) D.
Scheid, M. von der Luhe, M. Gallei, Macromol. Rapid Commun. 2016,
disproportionation of the Au(I) intermediate.
Addition in
25 oxidizes its
) with an exergonic driving
force of 0.92 V yielding the green polymer 14[PF 50 (Figure 2).
Selective reductions with color change proceed similarly in
DMF/THF. Addition of light brown 1,2,3,4,5-Me -CcH (E° = -1.10
V vs. FeCp* ) to 14 specifically reduces its 25 CcX centers (E° =
0.71 V vs. FeCp* ) with an exergonic driving force of 0.39 V
yielding the orange reduced polymer. Subsequent addition of
% Na/Hg (E° = - 1.61 V vs. FeCp* ) reduces the 25 Fb centers
E° = 0.56 V vs. FeCp* ) with an exergonic driving force of 0.12
+
-
DCM of additional NO PF
6 6
to olive-green 14[PF ]
2
5 Fc centers (E° = 0.62 V vs. FeCp*
2
6
]
5
2
-
2
1
2
(
2
V yielding a neutral deep-green form of polymer 14 (Figure 2).
3
7, 1573-1580; k) S. Schoettner, R. Hossain, C. Ruetiger, M. Gallei,
Polymers 2017, 9, 491.
[
[
[
8]
9]
a) J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem.
Int. Ed. 2002, 41, 4035-4037; b) C. W. Bielawski, R. H. Grubbs, Prog.
Polym. Chem. 2007, 32, 1-29; G. C. Vougioukalakis, R. H. Grubbs,
Chem. Rev. 2010, 110, 1746-1787.
In conclusion, the first tetrablock metallocopolymers have been
synthesized with 25 metallo-units in each bock using the very
efficient Ru ROMP catalyst 1. The design of the robustness of
the four distinct redox-robust centers allows electrochemical
redox cascades and various color changes upon addition of
exergonic redox reagents of suitable redox potentials, which
forms rich multi-color electrochromes. A forthcoming challenge
will involve film technology.
a) H. Gu, A. Rapakousiou, P. Castel, N. Guidolin, N. Pinaud, J. Ruiz, D.
Astruc, Organometallics 2014, 33, 4323-4335; b) H. Gu, R. Ciganda, R.
Hernández, P. Castel, A. Vax, P. Zhao, J. Ruiz, D. Astruc, Polym.
Chem. 2016, 7, 2358-2371.
10] a) H. Gu, R. Ciganda, P. Castel, A. Vax, D. Gregurec, J. Irigoyen, S.
Moya, L. Salmon, P. Zhao, J. Ruiz, R. Hernández, D. Astruc, Chem.-
Eur. J. 2015, 21, 18177-18186; b) H. Gu, R. Ciganda, R. Hernandez, P.
Castel, P. Zhao, J. Ruiz, D. Astruc, Macromolecules 2015, 48, 6071-
6076.
Acknowledgements
[
[
[
11] a) J. E. Sheats, M. D. Rausch, J. Org. Chem. 1970, 35, 3245-3249; b)
For redox potentials of various ferrocene and cobaltocene complexes,
see N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877-910.
12] a) A. S. Abd-El-Aziz, S. Bernardin, Coord. Chem. Rev. 2000, 203, 219-
Financial support from Gobierno Vasco (R. C., post-doctoral
scholarship), the Universidad del Païs Vasco, the Universities of
Bordeaux and Sichuan, Chengdu, China, CIC biomaGUNE and
the CNRS is gratefully acknowledged
2
67; b) J.-R. Hamon, D. Astruc, P. Michaud, J. Am. Chem. Soc. 1981,
03, 758-766.
1
13] For reviews of ROMP reactions initiated by 1 with late transition-metal
metallocenes in the side chains, see a) I. Dragutan, V. Dragutan, B. C.
Simionescu, A. Demonceau, H. Fisher, Beilstein J. Org. Chem. 2015,
Keywords: electrochrome • copolymer • redox activity • electron
transfer • metallocene
1
1, 2747-2762; b) I. Dragutan, V. Dragutan, P. Filip, B. C. Simionescu,
A. Demonceau, Molecules 2016, 21, 198.
[
1]
a) A. S. Abd-El-Aziz, P. O. Shipman, B. N. Boden, W. S. McNeil, Prog.
Polym. Sci. 2010, 35, 714-836; b) G. R. Whittell, M. D. Hager, U. S.
Schubert, I. Manners, Nat. Mater. 2011, 10, 176-188; c) F. H. Schacher,
P. A. Rupar, I. Manners, Anew. Chem. Int. Ed. 2012, 51, 7898-7921; d)
A. S. Abd-El-Aziz, E. A. Strohm, Polymer 2012, 53, 4879-4921; e) J. W.
Zhou, G. R. Whittell, I. Manners, Macromolecules 2014, 47, 3529-3543;
f) C. Deraedt, A. Rapakousiou, Y. Wang, L. Salmon, M. Bousquet, D.
Astruc, Angew. Chem. Int. Ed. 2014, 53, 8445-8449; g) H. B. Qiu, Z. M.
Hudson, M. A. Winnick, I. Manners, Science 2015, 347, 1329-1332; h)
R. L. N. Hailes, A. M. Oliver, J. Gwyther, G. R. Whittell, I. Manners,
Chem. Soc. Rev. 2016, 45, 5358-5407; i) R. Schroot, M. Jäeger, U. S.
Schubert, Chem. Soc. Rev. 2017, 46, 2754-2798.
[
[
14] a) I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A.
F. Masters, L. J. Philips, J. Phys. Chem. B 1999, 103, 6713-6722; b) J.
Ruiz, M.-C. Daniel, D. Astruc, Can. J. Chem. 2006, 84, 288-299.
15] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals
nd
and Applications, 2 ed., Wiley, New York, 2001.
[16] F. Barrière, W. E. Geiger, J. Am. Chem. Soc. 2006, 128, 3980-3989; b)
A. K. Diallo, J.-C. Daran, F. Varret, J. Ruiz, D. Astruc, Angew. Chem.
Int. Ed. 2009, 48, 3141-3145; c) W. E. Geiger, F. Barrière, Acc. Chem.
Res. 2010, 43, 1030-1039; d) A. K. Diallo, C. Absalon, J. Ruiz, D.
Astruc, J. Am. Chem. Soc. 2011, 133, 629-641.
[
[
2]
3]
F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advanced
th
[17] J. B. Flanagan, S. Margel, A. J. Bard, F. C. Anson, J. Am. Chem. Soc.
1978, 100, 4248-4253.
Inorganic Chemistry, 6 Ed., Wiley, New York, 1999.
nd
a) Photochromism: Molecules and Systems, 2 Ed. (Eds.: H. Dürr, H.
[
18] M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293-346.
Bouas-Laurent) , Elsevier, Amsterdam, 1990; b) P. M. S. Monk, R. J.
Mortimer, D. R. Rosseinsky, Electrochromism and Electrochromic
Devices, Cambridge Editions, 2007.
[
4]
G. L. Geoffroy, M. S. Wrighton, Organometallic Photochemistry,
Academic Press, Cambridge, Mass., 2012.
This article is protected by copyright. All rights reserved.