3
References and notes
[
[
[
1] X.P. Fang, J.E.Anderson, C.J. Chang, J.L. Mclaughlin, J. Chem. Soc.,
Perkin Trans. 1 (1990) 1655–1661.
2] X.P. Fang, J.E. Anderson, C.J. Chang, J.L. Mclaughlin, J. Nat. Prod. 54
Finally, we turned our attention to the synthesis of (+)-
crassalactones B (3) and C (4) from (+)-1 or 15 (Scheme 5).
Direct monoacylation of diol 1 with cinnamoyl chloride didn't
show obvious chemoselectivity to afford 3 and 4 in a similar
amount. On the other hand, secondary alcohol 15 was coupled
with cinnamoyl chloride to give the resulting ester 20. Under the
similar TFA conditions, the cleavage of O-TBS protecting group
in 20 was more difficult than 15 probably due to the acylation of
the vicinal hydroxyl, and unsaturated lactone 21 was obtained in
(1991) 1034–1043.
3] M.A. Blàzquez, A. Bermejo, M.C. Zafra-Polo, D. Cortes, Phytochem.
Anal. 10 (1999) 161–170.
[4] For a review on the cytotoxic activity and other bioactivity of
styryllactones see: (a) H.B. Mereyala, M. Joe, Curr. Med. Chem.: Anti-
Cancer Agents 1 (2001) 293–300; (b) M.A. Blázquez, A. Bermejo, M.C.
Zafra-Polo, D. Cortes, Phytochem. Anal. 10 (1999) 161–170; (c) A.
Fatima, L.V. Modolo, L.S. Conegero, R.A. Pilli, C.V. Ferreira, L.K.
Kohn, J. E. de Carvalho, Curr. Med. Chem. 13 (2006) 3371–3384; (d)
C.E. Wiart, Based Complement. Altern. Med. 4 (2007) 299-311.
8
0% yield. When was stirred in MeOH in the presence of p-
TsOH, 4 was generated in 40% yield via a similar domino
deprotection and cyclization, together with 21 (43%). After
TBAF-mediated removal of the TBS protecting group in 21,
concomitant intramolecular oxa-Michael addition led to 4 with
[5] N. Suchaichit, K. Kanokmedhakul, N. Panthama, K. Poopasit, P.
Moosophon, S. Kanokmedhakul, Fitoterapia 103 (2015) 206–212.
[6] V. Popsavin, G. Benedeković, B. Srećo, M. Popsavin, J. Francuz, V.
Kojić, G. Bogdanović, Org. Lett. 9 (2007) 4235–4238.
[7] (a) V. Popsavin, J. Francuz, S.B. Zelenović, G. Benedeković, M.
Popsavin, V. Kojic, G. Bogdanovic, Bioorg. Med. Chem. Lett. 23
7
7% yield.
(2013) 5507–5510; (b) G. Benedeković, J. Francuz, I. Kovačević, M.
O
OH
O
Popsavin, B. Sreco, V. Kojić, G. Bogdanović, V. Didjaković, V.
Popsavin, Eur. J. Med. Chem. 82 (2014) 449–458; (c) M. Svircev, G.
Benedeković, I. Kovacević, M. Popsavin, V. Kojić, D. Jakimov, T.
Srdic-Rajić, M.V. Rodić, V. Popsavin, Tetrahedron 74 (2018) 4761–
OH
O
O
H
Ph
O
Ph
H
O
a
O
H
Ph
+
Ph
H
O
O
4
768; (d) J. Francuz, I. Kovačević, M. Popsavin, G. Benedeković, B.
O
HO
O
HO
H
O
Srećo Zelenović, V. Kojić, D. Jakimov, L. Aleksić, G. Bogdanović, T.
Srdić-Rajić, E. Lončar, M.V. Rodić, V. Divjaković and V. Popsavin,
Eur. J. Med. Chem., 128 (2017) 13–24; (e) V. Popsavin, G.
Benedeković, B. Srećo, M. Popsavin, J. Francuz, V. Kojić, G.
Bogdanović, Bioorg. Med. Chem. Lett. 18 (2008) 5178–5181.
H
O
Ph
4
1
3
O
OH
O
Ph
O
O
c
[8] For the reviews on syntheses of styryl lactones, see: (a) M. Mondon, J.-
P. Gesson, Curr. Org. Synth. 3 (2006) 41–75; (b) G. Zhao, B. Wu, X.Y.
Wu, Y.Z. Zhang, Mini-Rev. Org. Chem. 2 (2005) 333–353; (c) Z.C.
Yang, W.S. Zhou, Heterocycles 45 (1997) 367–383.
[9] For recent synthesis of 1 and 2, see: (a) L. Hernández-García, L.
Quintero, H. Höpfl, M. Sosa, F. Sartillo-Piscil, Tetrahedron 65 (2009)
139–144; (b) K.R. Prasad, M.G. Dhaware, Synthesis 23 (2007) 3697–
b
Ph
TBSO
Ph
O
CO2Et
TBSO
O
CO2Et
15
20
O
O
O
3
705; (c) K.R. Prasad, S.L. Gholap, J. Org. Chem. 73 (2008) 2-11; (d) P.
Ph
Ph
O
OH
O
Ruiz, J. Murga, M. Carda, J.A. Marco, J. Org. Chem. 70 (2005) 713–
716; (e) V.K. Yadav, D. Agrawal, Chem. Commun. (2007) 5232–5234;
O
H
+
Ph
Ph
(f) M. Ralph, S. Ng, K.I. Booker-Milburn, Org. Lett. 18 (2016) 968–971;
TBSO
HO
(g) A.D. Wouters, A.B. Bessa, M. Sachini, L.A. Wessjohann, D.S.
Lüdtke, Synthesis 45 (2013) 2222–2233; (h) R.F. de la Pradilla, J.
Fernandez, A. Viso, J. Fernandez, A. Gomez, Heterocycles, 68 (2006)
H
O
O
O
21
4
d
1
579–1584; (i) P. Pal, A.K. Shaw, Tetrahedron 67 (2011) 4036–4047.
Scheme 5. Reagents and conditions: a) cinnamoyl chloride, Et
3
N,
[
10] P. Tuchinda, B. Munyoo, M. Pohmakotr, P. Thinapong, S. Sophasan, T.
o
DMAP, CH
chloride, Et
2
Cl
2
, 0 C to rt, 47% for 3 and 46% for 4; b) cinnamoyl
Santisuk, V. Reutrakul, J. Nat. Prod. 69 (2006) 1728–1733.
[11] G. Benedeković, M. Popsavin, J. Francuz, I. Kovačević, V. Kojić, G.
Bogdanović, V. Divjaković, V. Popsavin, Eur. J. Med. Chem. 87 (2014)
o
3
N, DMAP, CH
2
Cl
2
, 0 C to rt, 92%; c) p-TsOH, MeOH,
o
rt, 40% for 4 and 43% for 21; d) TBAF, THF, 0 C to rt, 77%.
2
37-247.
[
12] (a) V. Popsavin, G. Benedeković, B. Srećo, M. Popsavin, J. Francuz, V.
Kojić, G. Bogdanović, Org. Lett. 9 (2007) 4235-4238; (b) V. Popsavin,
G. Benedeković, B. srećo, J. Francuz, M. Popsavin, V. Kojić, G.
Bogdanović, V. Divjaković, Tetrahedron 65 (2009) 10596-10607; (c) V.
Popsavin, G. Benedeković, B. Srećo, M. Popsavin, J. Francuz, V. Kojić,
G. Bogdanović, Bioorg. Med. Chem. Lett. 18 (2008) 5178-5181; (d) G.
Benedeković, I. Kovacević, M. Popsavin, J. Francuz,V. Kojić, G.
Bogdanović, V. Popsavin, Tetrahedron, 71 (2015) 4581-4589; (e) V.
Popsavin, B. Srećo, G. Benedeković, J. Francuz, M. Popsavin, V. Kojić,
G. Bogdanović, Eur. J. Med. Chem. 45 (2010) 2876-2883.
Conclusion
In conclusion, we have developed a concise and economical
synthesis of four styryllactones 1-4, in which a cascade
cyclization of precursor 15 or 20 was employed to construct
furanofurone bicyclic framework in one-pot. By the approach, 1-
4
were synthesized in 6 to 7 steps from readily available D-
glucono-δ-lactone derivative 9. There is no expensive reagents
and materials used in the whole synthesis. This robust route
should enable easy access to structural styryllactones and their
analogues.
[13] V. Popsavin, G. Benedeković, M. Popsavin, V. Kojić, G. Bogdanović
Tetrahedron Lett. 51 (2010) 3426–3429.
[14] G.V.M. Sharma, S. Mallesham, Tetrahedron: Asymmetry 21 (2010)
2
646-2658.
[15] K.R. Prasad, S.M. Kumar, Synthesis 45 (2013) 785-790.
[
16] (a) X. Liu, J. Jia, Y. Jia, H. Gu, J. Luo, X. Chen, Org. Lett. 20 (2018)
Acknowledgments
1
945–1948; (b) X. Li, L. Hu, J. Jia, H. Gu, Y. Jia, X. Chen, Org. Lett. 19
(
2017) 5372–5375; (c) L. Jiang, X. Liu, P. Yuan, Y. Zhang, X. Chen, J.
This work was supported by grants from the National Natural
Science Foundation of China (21172153), the Sichuan
Sciencenand Technology Program (2019YJ0032) and “the
Fundamental Research Funds for the Central Universities”. We
thank the Comprehensive Training Platform of Specialized
Laboratory, College of Chemistry, Sichuan University, as well as
Prof. Xiaoming Feng group for spectral data measurement.
Nat. Prod. 80 (2017) 805–812; (d) X. Liu, L. Hu, X. Liu, J. Jia, L. Jiang,
J. Lin, X. Chen, Org. Biomol. Chem. 12 (2014) 7603–7611.
[17] (a) X. Yang, P. Yuan, F. Shui, Y. Zhou, X. Chen, Org. Biomol. Chem.
7 (2019) 4061– 4072; (b) P. Yuan, X. Liu, X. Yang, Y. Zhang, X.
1
Chen, J. Org. Chem. 82 (2017) 3692–3701; (c) X. Liu, R. Chen, F.
Duan, J. Jia, Y. Zhou, X. Chen, Tetrahedron. Lett. 58 (2017) 3947–
3
950.
[18] M.C.B. Souza, M.N. Silva, V.F. Ferreira, Synlett (1998) 1339 –1340.