Inorganic Chemistry
Article
of Amberlite IR-120 in the TBA+ form. The resulting orange solution
was then precipitated and dried with diethyl ether, yielding an orange
powder (180 mg, Yield: 86%). H NMR, 400 MHz, CD3CN: δ 8.12
ASSOCIATED CONTENT
* Supporting Information
Tables containing crystallographic data, half-wave potentials,
kinetic parameters, and coloration and fading kinetic
■
S
1
(d, J = 2.8 Hz, 1H), 8.01 (dd, J = 9.0, 2.8 Hz, 1H), 7.61 (d + dd, J = 8.2
Hz, JSnH = 96.0 Hz, 2H), 7.32 (d+ dd, J = 8.2 Hz, JSnH = 33.0 Hz, 2H),
7.23 (td, J = 7.7, 1.3 Hz, 1H), 7.18 (ddd, J = 7.7, 1.3, 0.6 Hz, 1H), 7.15
(dd, J = 10.4, 0.7 Hz, 1H), 6.92 (td, J = 7.7, 1.3 Hz, 1H), 6.87 (dt, J =
7.7, 0.7 Hz, 1H), 6.74 (dd, J = 9.0, 0.7 Hz, 1H), 6.00 (d, J = 10.4 Hz,
1H), 4.36 (d, J = 18.4 Hz, 1H), 4.17 (d, J = 18.4 Hz, 1H), 3.15 (m,
32H), 1.64 (m, 32H), 1.38 (sextuplet, J = 7.3 Hz, 32H), 1.31 (s, 3H),
1.19 (s, 3H), 0.97 (t, J = 7.3 Hz, 48H). 31P NMR, 162 MHz, CD3CN:
δ −10.99 (s + d, JSnP = 23.5 Hz). IR (KBr, cm−1): ν 2962 (m), 2933
(m), 2873 (m), 2360 (w), 2340 (w), 1652 (w), 1519 (w), 1482 (m),
1459 (m), 1380 (w), 1337 (w), 1276 (w), 1070 (m), 963 (s), 886 (s),
811 (s), 706 (w), 667 (w), 593 (w), 514 (w), 381 (m), 336 (w), 302
(w), 265 (m). MS (ESI): most intense peaks, {Aggregates}x− m/z
{[KSn[SP]]}4‑ 804.8 (100), calcd 804.8; {H[KSn[SP]]}3− 1072.4 (75),
calcd 1072.1; {TBA·H[KSn[SP]]}2− 1730.4 (25), calcd 1730.3. Anal.
Calcd for PW11SnO42C27H21N2C64H144N4(H2O)2: C, 25.88; H, 4.03;
N, 1.99. Found: C, 25.65; H, 3.95; N, 2.05.
4.4.4. Synthesis of TBA.KSn[BSPR]. This compound was obtained
following the same experimental protocol than that described for TBA.
KSn[SPR], using the raw BSPR compound (36.9 mg, 0.1 mmol)
instead of the SPR one, as an orange powder (174 mg, Yield: 82%).
1H NMR, 400 MHz, CD3CN: δ 8.14 (d, J = 2.8 Hz, 1H), 8.06 − 7.97
(m, 2H), 7.92−7.83 (m, 2H), 7.60 (d + dd, J = 8.2 Hz, JSnH = 96.0 Hz,
2H), 7.46 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.38−7.29 (m, 3H), 7.29
(ddd, J = 8.3, 6.8, 1.1 Hz, 1H), 7.21 (dd, J = 10.4, 0.7 Hz, 1H), 6.72
(dd, J = 9.1, 0.6 Hz, 1H), 6.08 (d, J = 10.4 Hz, 1H), 4.48 (d, J = 18.6
Hz, 1H), 4.26 (d, J = 18.6 Hz, 1H). 3.15 (m, 32H), 1.65 (s, 3H), 1.64
(m, 32H), 1.38 (sextuplet, J = 7.3 Hz, 32H), 1.36 (s, 3H), 0.97 (t, J =
1
parameters and figures showing structural representations, H
and 31P NMR spectra, Abs(t) vs t plots, double and single
exponential fits, Kubelka−Munk transformed reflectivity vs
wavelength and energy plots, photographs of powders,
evolution of the photogenerated absorption, and temporal
evolution of the absorbance at 584 nm. This material is
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the CNRS, the Minister
̀
e de l′Enseignement
Super
BIOOPOM.
́
ieur et de la Recherche, and the ANR-11-BS07-011-01
REFERENCES
(1) Hirshberg, Y.; Fisher, E. J. Chem. Phys. 1955, 23, 1723.
(2) Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41, 4010.
(3) (a) Benard, S.; Yu, P. Adv. Mater. 2000, 12, 48. (b) Godsi, O.;
́
Peskin, U.; Kapon, M.; Natan, E.; Eichen, Y. Chem. Commun. 2001,
2132.
■
7.3 Hz, 48H). 31P NMR, 162 MHz, CD3CN: δ = −10.99 (s + d, JSnP
=
24.3 Hz). IR (KBr, cm−1): ν 2962 (m), 2934 (m), 2873 (m), 2360
(w), 2340(w), 1623 (w), 1519 (w), 1482 (m), 1380 (w), 1336 (m),
1279 (w), 1069 (s), 963 (s), 886 (s), 813 (s), 705 (w), 667 (w), 593
(w), 514 (w), 381 (m), 334 (w), 265 (m). MS (ESI): most intense
peaks, {Aggregates}x− m/z (%):{H[KSn[BSP]]}3− 1089.4 (100), calcd
1089.4; {TBA·H[KSn[BSP]]}2− 1754.3 (40), calcd 1754.3. Anal. Calcd
for C95H167N6O42PSnW11: C, 26.93; H, 3.97; N, 1.98. Found: C,
27.41; H, 3.96; N, 2.08.
(4) (a) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100,
1741. (b) Durr, H., Bouas-Laurent, H., Eds. Photochromism: Molecules
̈
and Systems; Elsevier: Amsterdam, 2003. (c) Feringa, B. L., Ed.
Molecular Switches; Wiley-VCH: Weinheim, 2001.
(5) (a) Wang, M.-S.; Xu, G.; Zhang, Z.-J.; Guo, G.-C. Chem.
Commun. 2010, 46, 361. (b) Pardo, R.; Zayat, M.; Levy, D. Chem. Soc.
Rev. 2011, 40, 672.
(6) (a) Giordani, S.; Raymo, F. M. Org. Lett. 2003, 5, 3559.
(b) Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2001, 123, 4651.
(7) Zhang, F.; Zou, X.; Feng, W.; Zhao, X.; Jing, X.; Sun, F.; Ren, H.;
Zhu, G. J. Mater. Chem. 2012, 22, 25019.
(8) (a) Park, I. S.; Jung, Y.-S.; Lee, K.-J.; Kim, J.-M. Chem. Commun.
2010, 46, 2859. (b) Wagner, K.; Byrne, R.; Zanoni, M.; Gambhir, S.;
Dennany, L.; Breukers, R.; Higgins, M.; Wagner, P.; Diamond, D.;
Wallace, G. G.; Officer, D. L. J. Am. Chem. Soc. 2011, 133, 5453.
(9) Bahr, J. L.; Kodis, G.; de la Garza, L.; Lin, S.; Moore, A. L.;
Moore, T. A.; Gust, D. J. Am. Chem. Soc. 2001, 123, 7124.
(10) (a) Long, D.-L.; Tsunashima, R.; Cronin, L. Angew. Chem., Int.
Ed. 2010, 49, 1736. (b) Bassil, B. S.; Kortz, U. Z. Anorg. Allg. Chem.
2010, 636, 2222. (c) Lu, H.; Geletii, Y. V.; Zhao, C.; Vickers, J. W.;
Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D. G.; Hill, C. L. Chem.
Soc. Rev. 2012, 41, 7572. (d) Dolbecq, A.; Dumas, E.; Mayer, C. R.;
Mialane, P. Chem. Rev. 2010, 110, 6009. (e) Dolbecq, A.; Mialane, P.;
4.4.5. Synthesis of TBA.KSi[SPR]. In a dried Schlenk flask, SPR
(70.6 mg, 0.204 mmol), TBA3[PW11O40{SiPhI}2] (200 mg, 0.05
mmol), Pd(PPh3)2(Cl)2 (2.9 mg, 0.004 mmol), and CuI (0.8 mg,
0.004 mmol) were dissolved under argon in 4 mL of dry DMF. Freshly
distilled triethylamine (0.15 mL, 1 mmol) was then added, and the
reaction was stirred for 24 h. Diethyl ether (150 mL) was added to the
dark green solution, and the precipitate was filtered. The dark green
solid was then redissolved in acetonitrile (50 mL), and the resulting
solution was stirred for 30 min and then evaporated to dryness. After
redissolution in CH2Cl2, TBABr was added in excess. The product was
purified via an LH20 column in CH2Cl2. The filtrate was then
precipitated with diethyl ether, yielding an orange powder after
1
filtration (130 mg, Yield: 62%). H NMR, 400 MHz, CD3CN: δ 8.11
(d, J = 2.9 Hz, 2H), 8.02−7.94 (m, 1H), 7.73 (d, J = 8.2 Hz, 4H), 7.32
(d, J = 8.2 Hz, 4H), 7.22 (td, J = 7.7, 1.3 Hz, 2H), 7.17 (ddd, J = 7.7,
1.3, 0.6 Hz, 2H), 7.13 (dd, J = 10.4, 0.5 Hz, 2H), 6.91 (td, J = 7.7, 1.3
Hz, 2H), 6.88 (d, J = 7.7 Hz, 2H), 6.72 (dd, J = 9.0, 0.7 Hz, 2H), 6.00
(d, J = 10.4 Hz, 2H), 4.36 (d, J = 18.5 Hz, 2H), 4.16 (d, J = 18.5 Hz,
2H), 3.12 (m, 24H), 1.63 (m, 24H), 1.37 (sextuplet, J = 7.4 Hz, 24H),
1.30 (s, 3H), 1.18 (s, 3H), 0.97 (t, J = 7.4 Hz, 32 H). 31P NMR, 162
MHz, CD3CN: δ −12.13 (s). IR (KBr, cm−1): ν 2963 (m), 2933 (m),
2874 (m), 2360 (w), 2340 (w), 1609 (w), 1519 (w), 1482 (m), 1458
(w), 1380 (w), 1337 (m), 1275 (w), 1160 (w), 1110 (m), 1090 (w),
1067 (m), 1039 (m), 965 (s), 872 (s), 824 (s), 769 (m), 748 (m), 716
(w), 668 (w), 589 (m), 521 (m), 394 (m), 353 (w), 278 (m). MS
(ESI): Most intense peaks, {Aggregates}x− m/z (%): {[KSi[SP]]}3−
1197.5 (100), calcd 1197.5; {TBA[KSi[SP]]}2− 1917.3 (20), calcd
1916.4. Anal. Calcd for PW11Si2O46C54H42N4C48H108N3: C, 28.36; H,
3.50; N, 2.27. Found: C, 28.48; H, 3.50; N, 2.10.
Sec
(11) (a) Mialane, P.; Zhang, G. J.; Mbomekalle,
Compain, J.-D.; Dolbecq, A.; Marrot, J.; Secheresse, F.; Keita, B.;
Nadjo, L. Chem.Eur. J. 2010, 16, 5572. (b) Compain, J.-D.; Deniard,
P.; Dessapt, R.; Dolbecq, A.; Oms, O.; Secheresse, F.; Marrot, J.;
Mialane, P. Chem. Commun. 2010, 46, 7733.
́
heresse, F.; Keita, B.; Nadjo, L. Chem. Commun. 2012, 48, 8299.
́
I. M.; Yu, P.;
́
́
(12) Oms, O.; Hakouk, K.; Dessapt, R.; Deniard, P.; Jobic, S.;
Dolbecq, A.; Palacin, T.; Nadjo, L.; Keita, B.; Marrot, J.; Mialane, P.
Chem. Commun. 2012, 48, 12103.
(13) (a) Gouzerh, P.; Proust, A. Chem. Rev. 1998, 98, 77. (b) Proust,
A.; Thouvenot, R.; Gouzerh, P. Chem. Commun. 2008, 1837.
G
dx.doi.org/10.1021/ic401380a | Inorg. Chem. XXXX, XXX, XXX−XXX