suggest that SLB containing 1% RGD ligand 1 could potentially
be used as a biomimetic membrane, and we envisage exploiting
this model system in evaluating the cellular response to different
lipid bilayer membranes of varying composition.
Acknowledgements
This work was supported by the Institut National du Cancer
(
INCA), the Universit e´ Joseph Fourier, the Centre National de
la Recherche Scientifique (CNRS), the Nanoscience Foundation
and NanoBio (Grenoble). We gratefully acknowledge Dr J.-C. Coll
(
Institut Albert Bonniot, INSERM U823, La Tronche, France) for
providing us with human embryonic kidney cell lines.
Notes and references
1
2
F. G. Giancotti and E. Ruoslahti, Science, 1999, 285, 1028.
M. D. Pierschbacher and E. Ruoslahti, Nature, 1984, 309, 30.
Fig. 3 Evaluation of cell morphology using optical microscopy. Cell
-1
suspension (100 000 cells mL ) was continuously injected for 15 min
3 U. Hersel, C. Dahmen and H. Kessler, Biomaterials, 2003, 24, 4385.
4 (a) R. Haubner, R. Gratias, B. Diefenbach, S. L. Goodman, A. Jonczyk
and H. Kessler, J. Am. Chem. Soc., 1996, 118, 7461; (b) M. Kantlehner,
P. Schaffner, D. Finsinger, J. Meyer, A. Jonczyk, B. Diefenbach, B. Nies,
G. Holzemann, S. L. Goodman and H. Kessler, ChemBioChem, 2000,
-1
at 100 mL min , then Dulbecco’s Modified Eagle’s Medium (DMEM)
-1
at 50 mL min . Optical images of HEK-293(b3) cells on functionalized
supported lipid bilayer displaying 1% compound 1 at t = 18 min (A), t =
2
2
1 min (B), and t = 45 min (C), and displaying 0.1% compound 1 at t =
1
, 107; (c) K. Temming, D. L. Meyer, R. Zabinski, E. C. F. Dijkers,
0 min (D). Arrows indicate filopodial extensions. The broad arrow assigns
K. Poelstra, G. Molema and R. J. Kok, Bioconjugate Chem., 2006, 17,
the direction of the cell. Scale bar = 10 mm.
1385.
5
6
(a) J. Huang, S. V. Gr a¨ ter, F. Corbellini, S. Rinck, E. Bock, R.
Kemkemer, H. Kessler, J. Ding and J. P. Spatz, Nano Lett., 2009, 9, 1111;
(b) M. Arnold, E. A. Cavalcanti-Adam, R. Glass, R. Glass, J. Bl u¨ mmel,
W. Eck, M. Kantlehner, H. Kessler and J. P. Spatz, ChemPhysChem,
is worth noting that the ligand spacing where we observe this
effect (~10 nm), is significantly smaller than those reported for
2
004, 5, 383.
5,24–27
solid surfaces (~20–140 nm).
For instance, a ligand-to-ligand
V. Marchi-Artzner, B. Lorz, U. Hellerer, M. Kantlehner, H. Kessler and
spacing of 140 nm was necessary for a
v
b
3
-mediated actin stress
E. Sackmann, Chem.–Eur. J., 2001, 7, 1095.
27
7 B. Hu, D. Finsinger, K. Peter, Z. Guttenberg, M. B a¨ rmann, H. Kessler,
A. Escherich, L. Moroder, J. B o¨ hm, W. Baumeister, S. Sui and E.
Sackmann, Biochemistry, 2000, 39, 12284.
fiber organization in human foreskin fibroblasts. Our result
is not entirely surprising since the differences in the physical
properties of a rigid and a fluid surface (out-of-plane mobility,
8
V. Marchi-Artzner, B. Lorz, C. Gosse, L. Jullien, R. Merkel, H. Kessler
and E. Sackmann, Langmuir, 2003, 19, 835.
O. Worsfold, N. H. Voelcker and T. Nishiya, Langmuir, 2006, 22, 7078.
2
8
membrane tension) affect cell adhesion. The RGD ligand is
not covalently bound to the substrate surface, therefore receptor-
mediated removal of adhesion ligands from the substrate surface is
possible. In this context, formation of focal contacts via extensive
stress fiber formation required higher RGD ligand concentration.
Others parameters such as cell line and peptide ligand could also
influence the cell response. We next investigated cell adhesion for
a lower ligand concentration (molar ratio of 0.1% and interligand
spacing of ~ 30 nm) (Fig. 3 D). In these conditions, the HEK
cells adopted a spheroid morphology (~15–20 mm in diameter)
with no filapodial extensions. This result indicates that at this low
concentration, ten fold lower than that necessary for cell spreading,
the RGD-containing compound 1 solely promotes cell attachment
on the surface.
9
1
0 D. Stroumpoulis, H. Zhang, L. Rubalcava, J. Gliem and M. Tirrell,
Langmuir, 2007, 23, 3849.
11 (a) D. Boturyn, J.-L. Coll, E. Garanger, M.-C. Favrot and P. Dumy,
J. Am. Chem. Soc., 2004, 126, 5730; (b) J. Razkin, V. Josserand, D.
Boturyn, Z.-H. Jin, P. Dumy, M. Favrot, J.-L. Coll and I. Texier,
ChemMedChem, 2006, 1, 1069; (c) Z. Jin, V. Josserand, S. Foillard,
D. Boturyn, P. Dumy, M.-C. Favrot and J.-L. Coll, Mol. Cancer, 2007,
6, 41; (d) L. Sancey, V. Ardisson, L. M. Riou, M. Ahmadi, D. Marti-
Batlle, D. Boturyn, P. Dumy, D. Fagret, C. Ghezzi and J.-P. Vuillez,
Eur. J. Nucl. Med. Mol. Imaging, 2007, 34, 2037.
1
2 (a) S. Foillard, Z. Jin, E. Garanger, D. Boturyn, M.-C. Favrot, J.-L. Coll
and P. Dumy, ChemBioChem, 2008, 9, 2326; (b) S. Foillard, L. Sancey,
J.-L. Coll, D. Boturyn and P. Dumy, Org. Biomol. Chem., 2009, 7, 221.
3 L. Sancey, E. Garanger, S. Foillard, G. Schoehn, A. Hurbin, C. Albiges-
Rizo, D. Boturyn, C. Souchier, A. Grichine, P. Dumy and J.-L. Coll,
Mol. Ther., 2009, 17, 837.
1
In the present study, we used two complementary techniques
to evaluate the attachment and spreading of HEK cells on a
functionalized SLB. When optical images could not discriminate
between round cell morphology, those simply settled on the
surface and those firmly attached to the surface through ligand–
receptor interactions, the QCM-D technique is sensitive only to
the latter ones. As a result for the first time, we estimated the RGD
concentrations required for cell attachment and cell spreading on
a fluid supported lipid bilayer, respectively nearly 1430 and 14300
14 M. Galibert, P. Dumy and D. Boturyn, Angew. Chem., Int. Ed., 2009,
8, 2576.
4
1
1
1
1
1
2
5 E. Garanger, D. Boturyn, O. Renaudet, E. Defrancq and P. Dumy,
J. Org. Chem., 2006, 71, 2402.
6 S. Foillard, M. Ohsten Rasmussen, J. Razkin, D. Boturyn and P. Dumy,
J. Org. Chem., 2008, 73, 983.
7 J.-P. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech, S. L.
Goodman and M. A. Arnaout, Science, 2002, 296, 151.
8 M. S. Lord, C. Modin, M. Foss, M. Duch, A. Simmons, F. S. Pedersen,
B. K. Milthorpe and F. Besenbacher, Biomaterials, 2006, 27, 4529.
9 P. A. Underwood, P.A. Bean and J. M. Whitelock, Atherosclerosis, 1998,
141, 141.
-
2
ligands mm . Moreover, we observed that a flattened morphology
involving stress fiber formation in HEK-293(b3) cells could be
promoted by the RGD motif 1 on a fluid surface. These results
0 (a) J. F. Nagle and S. Tristram-Nagle, Biochim. Biophys. Acta, 2000,
1
469, 159; (b) O. S. Andersen and R. E. Koeppe II, Annu. Rev. Biophys.
Biomol. Struct., 2007, 36, 107.
This journal is © The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 1531–1534 | 1533