1506
Q.-P. Liu et al.
LETTER
J. Am. Chem. Soc. 2005, 127, 7694. (d) Peng, H. Y.; Lam,
C. K.; Mak, T. C. W.; Cai, Z. W.; Ma, W. T.; Li, Y. X.;
Wong, H. N. C. J. Am. Chem. Soc. 2005, 127, 9603.
(e) Wang, X.; Wang, X.; Guo, H.; Wang, Z.; Ding, K. Chem.
Eur. J. 2005, 11, 4078. (f) Wang, X.; Shi, L.; Li, M.; Ding,
K. Angew. Chem. Int. Ed. 2005, 44, 6362. (g) Wang, X.;
Ding, K. J. Am. Chem. Soc. 2004, 126, 10524. (h) Guo, H.;
Wang, X.; Ding, K. Tetrahedron Lett. 2004, 45, 2009.
(i) Takizawa, S.; Somei, H.; Jayaprakash, D.; Sasai, H.
Angew. Chem. Int. Ed. 2003, 42, 5711. (j) For pioneer work
on cross-linked dendritic catalysts, see: Reetz, M. T.; Giebel,
D. Angew. Chem. Int. Ed. 2000, 39, 2498. (k) For self-
supported amphiphilic polymeric Pd-catalyst, see: Yamada,
Y. M. A.; Takeda, K.; Takahashi, H.; Ikegami, S. Org. Lett.
2002, 4, 3371.
Table 3 Recovery Use of Heterogeneous Palladacycle Catalyst 3b
in the Suzuki Reaction of p-Nitrochlorobenzene with Phenylboronic
Acida
2 mol% 3b
+
Cl
O2N
PhB(OH)2
O2N
Ph
K2CO3, TBAB
DMF, 110 °C
Run 1
Yield
Time
Run 2
Yield
Time
Run 3
Yield
Time
Run 4
Yield
Time
Run 5
Yield
Time
98%
98%
98%
98%
95%
100 min
100 min
110 min
120 min
130 min
a ArCl–phenyl boronic acid–K2CO3–TBAB = 1:1.5:2:0.2, at 1.5
mmol scale using 15 mg catalyst 3b.
(5) (a) Rigaut, S.; Delville, M.-H.; Losada, J.; Astruc, D. Inorg.
Chim. Acta 2002, 334, 225. (b) Harada, T.; Nakatsugawa,
M. Synlett 2006, 321.
(6) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Vol. 1
and 2; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH:
Weinheim, 2004.
through Pd–chloro bridges for the first time. The self-sup-
ported heterogeneous solids are stable and effective cata-
lysts for the Suzuki coupling of aryl bromides and
chlorides comparable to the homogeneous analogue under
aerobic conditions. Moreover, simple recovery and reuse
of the heterogeneous star-shaped catalysts was demon-
strated while some catalyst leaching was detected in the
presence of TBAB. We believe that this protocol of cross-
linking of appropriate compounds with multiple ligands
by Pd–halide bridges may lead to novel and efficient
heterogeneous catalysts in other palladacycles as well.
Furthermore, application in other transition-metal-halide
linked catalytic systems will be desirable.14
(7) For recent reviews on palladacycles, see: (a) Dupont, J.;
Pfeffer, M.; Spencer, J. Eur. J. Inorg. Chem. 2001, 1917.
(b) Bedford, R. B. Chem. Commun. 2003, 1787. (c) Zapf,
A.; Beller, M. Chem. Commun. 2005, 431. (d) Dupont, J.;
Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527.
(8) (a) Závada, J.; Pánková, M.; Holý, P.; Tichý, M. Synthesis
1994, 1132. (b) Weng, L.-L.; Chen, Y.-C.; Zheng, H. Chin.
J. Chem. 1998, 16, 28.
(9) For the synthesis and application of oxime-palladacycles,
see: (a) Alonso, D. A.; Nájera, C.; Pacheco, M. C. Org. Lett.
2000, 2, 1823. (b) Alonso, D. A.; Nájera, C.; Pacheco, M. C.
J. Org. Chem. 2002, 67, 5588. (c) Botella, L.; Nájera, C.
Angew. Chem. Int. Ed. 2002, 41, 179. (d) For recyclable
silica gel supported oxime-palladacycle catalyst, see:
Baleizão, C.; Corma, A.; García, H.; Leyva, A. Chem
Commun. 2003, 606.
Acknowledgment
(10) General Procedure for the Synthesis of Self-Supported
Catalyst 3.
This work was supported by the grant from Sichuan University. We
are grateful for the financial support from the National Natural
Science Foundation of China. We thank Prof. MFH for his help
concerning ICP analysis.
To a solution of Li2PdCl4 (116 mg, 0.44 mmol) and NaOAc
(38.3 mg, 0.46 mmol) in MeOH (4 mL) was added a solution
of the corresponding star-shaped oxime 2 (0.49 mmol) in
MeOH (4 mL). Brown solid precipitated from the solution in
about half an hour. After stirring at r.t. for 1 d, the mixture
was further stirred at 40 °C for 48 h. The mixture was filtered
and washed thoroughly with H2O, MeOH and acetone. The
solid was dried under high vacuum at 50 °C for 10 h. The Pd
loading was determined by ICP analysis.
References and Notes
(1) Kragl, U.; Dwars, T. Trends Biotechnol. 2001, 19, 442.
(2) For recent reviews on recoverable catalysts, see: (a)
Special issue: Chem. Rev. 2002, 102 (10). (b) Caminade,
A.-M.; Maraval, V.; Laurent, R.; Majoral, J.-P. Curr. Org.
Chem. 2002, 6, 739. (c) Dahan, A.; Portnoy, M. J. Polym.
Sci., Part A: Polym. Chem. 2005, 43, 235.
(11) For a recent report on dendritic diphosphino Pd catalysts in
Suzuki reaction, see: Lemo, J.; Heuzé, K.; Astruc, D. Org.
Lett. 2005, 7, 2253.
(3) For some selected examples, see: (a) Karimi, B.; Ghoreishi-
Nezhad, M.; Clark, J. H. Org. Lett. 2005, 7, 625. (b) Chen,
Y.-C.; Wu, T.-F.; Jiang, L.; Cui, X.; Deng, J.-G.; Zhu, J.;
Jiang, Y.-Z. J. Org. Chem. 2005, 70, 1006. (c) Hu, A.; Yee,
G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486.
(d) Karimi, B.; Enders, D. Org. Lett. 2006, 8, 1237.
(e) Barre, G.; Taton, D.; Lastecoueres, D.; Vincent, J.-M. J.
Am. Chem. Soc. 2004, 126, 7764. (f) Nlate, S.; Plault, L.;
Astruc, D. Chem. Eur. J. 2006, 12, 903.
(4) For self-supported linear chiral catalyst, see: (a) Dai, L.-X.
Angew. Chem. Int. Ed. 2004, 43, 5726. (b) Ding, K.; Wang,
Z.; Wang, X.; Liang, Y.; Wang, X. Chem. Eur. J. 2006, 12,
early view. (c) Liang, Y.; Jing, Q.; Li, X.; Shi, L.; Ding, K.
(12) For recent reviews on Suzuki coupling, see: (a) Miura, M.
Angew. Chem. Int. Ed. 2004, 43, 2201. (b) Bai, L.; Wang,
J.-X. Curr. Org. Chem. 2005, 9, 535.
(13) TBAB has been documented to stabilize the active
palladium nanoparticles, see: (a) Reetz, M. T.; Westermann,
E. Angew. Chem. Int. Ed. 2000, 39, 165. (b) Bedford, R. B.;
Blake, M. E.; Butts, C. P.; Holder, D. Chem. Commun. 2003,
466. (c) For detailed mechanistic consideration of
palladacycle catalysts, see ref. 7 and references therein.
(14) For an example of chloro-bridged Pt(II) dimer, see: Bedford,
R. B.; Hazelwood, S. L. Organometallics 2002, 21, 2599.
Synlett 2006, No. 10, 1503–1506 © Thieme Stuttgart · New York