Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
dependent on the unstability of
4 under the reaction
Notes and references
DOI: 10.1039/C6CC09379E
condition.16 The polymer structures were confirmed by 1H
NMR, 13C NMR, and IR spectra.15 The 1H NMR spectrum of
Poly-5a appears as broad signals, but consists of all proton
signals from each component with appropriate integral ratio
(Figure S29),15 indicating that the polymer includes both 5
and 3 skeletons. In the 13C NMR spectrum (Figure S30),15
the appearance of carbon signals at around 160−170 ppm
clearly indicates the formation of amide linkages
between the fragments. The chemical shifts are in good
accordance with those of model compound 6. In the IR
1
(a) J. M. van Hest, J. Macromol. Sci., Part C: Polym. Rev. 2007,
47, 63. (b) T. J. Deming, Adv. Mater. 1997, 9, 299. (c) T. J.
Deming, Chem. Rev. 2016, 116, 786. (d) L. A. Smith, P. X. Ma,
Colloid. Surf. B: Biointer. 2004, 39, 125. (e) S. A. Sell, M. J.
McClure, K. Garg, P. S. Wolfe, G. L. Bowlin, Adv. Drug. Deliv.
Rev. 2009, 61, 1007.
2
(a) B. Lotz, Biochim. 1979, 61, 205. (b) C. Vepari, D. L. Kaplan,
Prog. Polym. Sci. 2007, 32, 991. (c) Y. Wang, H.-J. Kim, G.
Vunjak-Novakovic, D. L. Kaplan, Biomater. 2006, 27, 6064.
(d) E. Wenk, H. P. Merkle, L. Meinel, J. Contr. Rel. 2011, 150,
128.
3
4
K. A. Piez, Encycl. Polym. Sci. Eng. 1985, 3, 699.
spectrum (Figure S32), amide absorption bands are observed
(a) J. Rosenbloom, W. R. Abrams, R. Mecham, FASEB J. 1993,
7, 1208. (b) D. R. Eyre, Ann. Rev. Biochem. 1984, 53, 717.
(a) T. J. Deming, J. Am. Chem. Soc. 1997, 119, 2759. (b) J.
Huang, A. Heise, Chem. Soc. Rev. 2013, 42, 7373. (c) T. J.
at around 1650 cm−
,
also
1 15
in the same region of
6
supporting the formation of amide linkages. The results
clearly indicate that the reaction led to Ugi’s 4CC-based
polymerization to form Poly-5a as an alternating
copolymer. In the 1H and 13C NMR spectra of Poly-5b
(Figures S33 and S34),15 all signals separately appear,
whose chemical shifts were well agreed with those of 6. The
methylene carbon at the α-position of amide is observable as
a couple of signal at 35.7 and 35.6 ppm in Figure S34, which
could be attributed to the cis-trans rotamers of N,N-
disubstituted amide bond. From the above, it is indicated
that the broadening of 1H NMR spectrum of Poly-5a would
come from the proximity of both chiral methyne centers
and the N,N-disubstituted amides between the repeating
unit. The weight-average MW (Mw) were estimated by
the linear correlation between log D and log M, to be 8,600
Da for Poly-5a and 2,200 Da for Poly-5b, respectively.13f,15
With the optimal condition (Table 1, entry 14), we next
investigated the scope and limitation of the polymerization
(Table 2). As for the substituent on the nitrogen atom as a R2
described in Scheme 1, bulkier functional groups such as
benzyl, isopropyl, and phenyl groups were also available for
the polymerization to give Poly-7−Poly-9 (entries 1−3). When
the aliphatic group was introduced to the R1 moiety of imine,
the polymerization gave a complex mixture (entry 4), mainly
because of the degradation of 10. On the other hand, the
preparation of 10 in situ dramatically improved the
polymerization results, which gave Poly-10 in a good yield
(entry 5). It is noted that the benzyl deprotection of Poly-10
can produce Poly(Gly-Val), although the chirality on the Val
structure is not controlled. The reaction of cyclic imine 11
and ketimine 12 with 3 gave the corresponding polymers
(Poly-11 and Poly-12) (entries 6 and 7). However, O-
methyloxime 12 was not reactive under the polymerization
condition (entry 8).
5
Deming, Adv. Polym. Sci. 2006, 202, 1.
6
(a) S. Nitta, A. Komatsu, T. Ishii, H. Iwamoto, K. Numata,
Polym. J. 2016, 48, 955. (b) J. Fagerland, A. Finne-Wistrand, K.
Numata, Biomacromol. 2014, 15, 735. (c) P. J. Baker, K.
Numata, Biomacromol. 2012, 13, 947.
(a) Y. Kamei, A. Sudo, H. Nishida, K. Kikukawa, T. Endo, J.
Polym. Sci. Part A: Polym. Chem. 2008, 46, 2525. (b) Y. Kamei,
A. Nagai, A. Sudo, H. Nishida, K. Kikukawa, T. Endo, J. Polym.
Sci. Part A: Polym. Chem. 2008, 46, 2649.
7
8
9
X. Tao, B. Zheng, H. R. Kricheldorf, J. Ling, J. Polym. Sci. Part
A: Polym. Chem. 2017, 55, 404.
(a) W. L. Mattice, L. Mandelkern, Biochem. 1971, 10, 1926.
(b) W. L. Mattice, L. Mandelkern, Biochem. 1971, 10, 1934.
(c) D. A. Rabenold, W. L. Mattice, L. Mandelkern,
Macromolecule 1974, 7, 43. (d) J. E. Scheffler, L. J. Berliner,
Biophys. Chem. 2004, 112, 285.
10 (a) Click chemistry: fundamentals and practical technologies,
T. Takata, Y. Koyama, K. Fukase Eds. CMC Publishing Co. Ltd.,
Tokyo, 2014. (b) S. Cheawchan, S. Uchida, H. Sogawa, Y.
Koyama, T. Takata, Langmuir, 2016, 32, 309. (c) C.-G. Wang,
Y. Koyama, S. Uchida, T. Takata, ACS Macro Lett. 2014, 3, 286.
(d) S. Cheawchan, Y. Koyama, S. Uchida, T. Takata, Polymer,
2013, 54, 4501. (e) Y.G. Lee, Y. Koyama, M. Yonekawa, T.
Takata, Macromolecules, 2010, 43, 4070.
11 (a) I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, Angew. Chem.
1959, 71, 386. (b) A. Dömling, I. Ugi, Angew. Chem., Int. Ed.
2000, 39, 3168. (c) I. Ugi, B. Werner, A. Dömling, Molecules,
2003, 8, 53. (d) U. K. Sharma, N. Sharma, D. D. Vachhani, E.
V. van der Eycken, Chem. Soc. Rev. 2015, 44, 1836. (e) J. G.
Rudick, J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 3985.
12 For selected reviews concerning alternating copolymer from
vinyl monomers, see: (a) A. Sommazzi, F. Garbassi, Prog.
Polym. Sci. 1997, 22, 1547. (b) I. Cho, Prog. Polym. Sci. 2000, 25,
1043. (c) D. Braun, F. Hu, Prog. Polym. Sci. 2006, 31, 239.
(d) B. M. Culbertson, Encycl. Polym. Sci. Eng. 1987, 9, 225. (e)
K. A. Parker, N. S. Sampson, Acc. Chem. Res. 2016, 49, 408.
13 (a) K. F. Morris, C. S. Jr. Johnson, J. Am. Chem. Soc. 1992, 114,
3139. (b) C. S. Jr. Johnson, Prog. NMR Spectrosc. 1999, 34,
203. (c) A. Chen, D. Wu, C. S. Johnson, J. Am. Chem. Soc. 1995,
117, 7965. (d) A. Jerschow, N. Müller, Macromolecules 1998,
31, 6573. (e) J. Viéville, M. Tanty, M.-A. Delsuc, J. Magn.
Reson. 2011, 212, 169. (f) W. Li, H. Chung, C. Daeffler, J. A.
Johnson, R. H. Grubbs, Macromolecules 2012, 45, 9595.
14 (a) R. J. Spandl, H. Rudyk, D. R. Spring, Chem. Commun. 2008,
44, 3001. (b) B. R. Galan, K. P. Kalbarczyk, S. Szczepankiewicz, J.
B. Keister, S. T. Diver, Org. Lett. 2007, 9, 1203. (c) D. Bonne,
M. Dekhane, J. Zhu, Org. Lett. 2004, 6, 4771.
In conclusion, we developed a new, one-pot, and practical
synthetic method for alternating peptides on the basis of
Ugi’s 4CC.
The reaction also features catalyst-free
polymerization. The present method may provide several
insights into not only material innovation exploiting
alternating
polymerization technique in future.
peptide skeleton but also new click
The applications
15 See ESI.
directed toward the synthesis of natural polypeptides
and the asymmetric polymerization using a chiral auxiliary or
catalyst are currently underway.
16 For a selected review, see: F. Millich, Chem. Rev. 1972, 72,
101.
This work was financially supported by JSPS KAKENHI
Grant Numbers JP24685023 and JP15H00718 and by the
Tokuyama Science Foundation.
This journal is © The Royal Society of Chemistry 20xx
4 | J. Name., 2012, 00, 1-3
Please do not adjust margins